FELIX 2002

Command Language Reference
MARCH 2002

All updated documentation (User Guide, Tutorials, and FELIX
Command Language Reference) for the latest release of FELIX is
available at the Accelrys website documentation library:

http://www.accelrys.com/doc/life/index.html

$accelrys

Accelrys Inc.

9685 Scranton Rd.
San Diego, CA
92121-3752

Tel: 858 799 5000
Fax: 858 799 5100

Copyright (U.S. version)

This document is copyright © 2001, Accelrys Incorporated. All rights reserved. Except as permit-
ted under the United States Copyright Act of 1976, no part of this publication may be reproduced
or distributed in any form or by any means or stored in a database retrieval system without the
prior written permission of Accelrys Inc.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFAR 252.227-7013 or
subparagraphs (c)(1) and (2) of the Commercial Computer Software—Restricted Rights clause at
FAR 52.227-19, as applicable, and any successor rules and regulations.

Trademark Acknowledgments

Catalyst, Cerius?, Discover, Insight 11, and QUANTA are registered trademarks of Accelrys Inc.
Biograf, Biosym, Cerius, CHARMmM, Open Force Field, NMRgraf, Polygraf, QMW, Quantum
Mechanics Workbench, WebLab, and the Biosym, MSI, and Accelrys marks are trademarks of
Accelrys Inc. Portions of QUANTA are copyright 1984-1997 University of York and are licensed
to Accelrys Inc. X-PLOR is a trademark of Harvard University and is licensed to Accelrys.

IRIS, IRIX, and Silicon Graphics are trademarks of Silicon Graphics, Inc. AlX, Risc System/6000,
and IBM are registered trademarks of International Business Machines, Inc. UNIX is a registered
trademark, licensed exclusively by X/Open Company, Ltd. PostScript is a trademark of Adobe

Systems, Inc. The X-Window system is a trademark of the Massachusetts Institute of Technology.
NFS is a trademark of Sun Microsystems, Inc. FLEXIm is a trademark of Highland Software, Inc.

Permission to Reprint, Acknowledgments, and References

Accelrys usually grants permission to republish or reprint material copyrighted by Accelrys, pro-
vided that requests are first received in writing and that the required copyright credit line is used.
For information published in documentation, the format is “Reprinted with permission from
Document-name, Month Year, Accelrys Inc., San Diego.” For example:

Reprinted with permission from FELIX 2002 User Guide, March 2002, AccelrysInc.,
San Diego.

Requests should be submitted to Accelrys Scientific Support, either through electronic mail to
support@accelrys.com or in writing to:

Accelrys Scientific Support and Customer Service
9685 Scranton Road
San Diego, CA 92121-3752

To print photographs or files of computational results (figures and/or data) obtained using
Accelrys software, acknowledge the source in a format similar to this:

Computational results obtained using software programs from A ccelrys Inc.—dynamics
calculationswere donewith the Discover® program, using the CFF91 forcefield, abinitio
calculations were done with the DMol program, and graphical displayswere printed out
from the Cerius? molecular modeling system.

To reference a Accelrys publication in another publication, no author should be specified and
Accelrys Inc. should be considered the publisher. For example:

FELIX 2002 User Guide, March 2002. San Diego: Accerys Inc., 2000.

»g;‘ Contents

How To Use This Book Xiii
Who should use thisguide Xiv
What FCLdoesc i, Xiv
Things to be familiarwith Xiv
Workstation requirements. Xiv
Related books. Xiv
Typographical conventions XV
Introduction 1
Whatis FCL? i 1
Usingthisguide. i 2
FCLcommandline. 3
Symbols and expressions.o 4
Reservedsymbols 4
Usersymbols............ 4
MacCroS 5
MeENUS . .. e 6
Thedatabase i 6
FCL Basics 9
AccesSINGFCLo 9
Commands and command arguments. 10
Casesensitivity i, 11
Errorsin FCLcommands. 12
Display and contexteffects 13
Line continuation 14
File prefixesand suffixes 15
Macrofileformats 16
Commentsymbols. 16
Tabsandspacing............ 16

FELIX Command Language Reference/ March 2002

3. Symbols and Expressions

Reservedsymbols. i
Types of reserved symbols.

User-definedsymbols
Defining symbols and their values

Symbol substitution. o .
Localsymbols

Globalsymbols.

Arithmetic expressions.
Integer vs. real expressions
Complex mathematical functions
Database functions.

4. Macros

Macrodirectories
Writing Macros.o

ExecutingmacroS.
Passing argumentstomacros

Interruptingamacroc.vviieninnnnnnn..
Loop application: Reversingamatrix
Loop application: Accessing the database

Branching statements.
gostatements.
gtostatements oL
gifstatements.
ifstatements.
if/then/else statements.
ifxstatements.
exrstatements

Macro-specificcommands
comstatements
errstatements
tyandtymstatements.

Using FELIXto build macros.

Some simple macro applications
Readingfiles
Plotting multiplefiles

5. Menus and Control Panels

Themenucommands.coiiiiin....

Chalr\lﬁin the menubarinterface
OQES. . ..
Changing the iconbar interface

Control panels (dialogboxes).
Types of control panel commands.
Working with control panel commands.
Outputcommands.
Inputcommands
Control-panel dependencies

Finding your way through menu interface files.

6. The Database and Tables
Structure of thedatabase

The databaseschema 74

Creating database information 76
Database command structure. 76
Basic dbasubcommands 76
Building database files. 77
Databaseentities 78
Database itemsandelements. 81
Databaseitem lists 84
dbalistsubcommands. 85
Creating lists of information 87
Spreadsheetinterface. 90

Command Reference 97

abl — Automatic baseline flattening 97
abp — Automatic baseline point selection using FLATT algorithm98
abg — Automatic selection of baseline points 98
abs — Absolute value replacement of work. 99
adb— Add worktobuffer. 99
add — Add numbertowork 100
aln — Antilogarithm (exponential) of work. 100
alt — Alternating real/imaginary 100
ann— Annotateplot 101
aph — Autophase spectrum. 102
arr — Arrow annotation. L 103
bas — Baseline points manipulation 104
bc—Baselinecorrect 104
bck — Back-calculate NOE intensities 105
bft — Bruker-Fourier transform. 106
bir — Read database from Insight Il 106
bit — Bit manipulation operators. 107
biw — Write database to Insight 1. 108
bld —Build amatrixfile 109
bml — Get moleculename. 110
bun—Setbundlemode. 110
by,bye —EXit FELIX 111
cal —Macrocall............ 111
cd — Convolution difference window 112
cdf — Conditional define. 112
cfg— Configurememory. 112
cgd — Change values in the control panel. 113
chi — Calculate minimum chi-square value 113
cl—Closeadatafile 113
clr—Clearframe................ 114
cls—Closeoutputfile........................... 114
cmb — Change symbol on the user interface. 114
cmd —Listcommands. 114
cmx — Close matrixfile(s) 115

cnj— Complexconjugate. 115

cnv — Time-domain convolution. 115

com — Execute FELIX commands in macros. 116
cp—Contourplot 116
cpl—Realtocomplex 117
csh — Circular signed shift 118
csl — Circular shiftleft. 118
csp — Cubic spline baseline correction 119
csr — Circular shiftright 120
cur—Cursorcontrol 120
dba — Database facility 123
dbc — Oversampled baseline correction 124
dbl — Double datasize 124
def — Defineasymbol. 124
der—Derivative 125
dft — Fast Fourier transform of digitally oversampled datal25
dir — Current working directory 126
dr — Draw work spaceand stack 126
drb — Display brother crosspeaks 127
drx — Display crosspeaks. 128
dst, exd, don, dof — Distributed processing commands . 129
eif —Macroend of block if 130
els—Macroelseblock. 130
em — Exponential multiply 130
ena — Enable multiplecursors 131
end — Macroend statement 131
env — Get a system environment variable. 131
err — Macro branch on error condition 132
esc — Test for escape keyevent 132
eva — Evaluate expression and assign to symbol 132
ex—EXxecuteamacro 133
exc — Exchange real and imaginary 133
exm — Execute Multiple Macros 134
exp—Expandeddisplay 134
exr — Executeamacroandreturn. 135
fit—FitlDpeaks. 135
fIf — FaceLift baseline correction. 136
fli — Frequency list manipulation 136
flp — Low-point fold of work space 139
flt — FLATT baseline flattening 140
fol — Fold work spaceinhalf 141
for—Loopformacros................... 141
fpo—Pop FELIXwindow 141
fpu — Push FELIXwindow 142
fra— Manipulate graphics frames. 142
ft — Fast Fourier transform 145

ful —Fulldisplay. 146

fxp —Filtercrosspeaks.......................... 146

get— Getasymbolvalue 147
gf—GenerateFID i 148
gif — Macro arithmeticgoto 148
gm — Gaussian/Lorentzian window 148
gmh — Gaussian multiply inHz 149
go — Macro unconditional branch. 149
gre — Greek textannotation 149
gto—Macrocasegoto. 150
gsp — Generatespectrum 150
gv—Getvalue. 151
hav—Halvedatasize 151
hcp—Hardcopyplot 152
hft — Hilbert transform 152
idf —Isdefined 153
if — Macro if conditional branch 153

Advanced if conditionals. 154

Macro if conditional block execution. 154
ift — Inverse Fourier transform 154
ing— Inquire Iffileexists 155
ins — Insight 1I-FELIX inter-process communication ... 155
int—Integral 156
inv— Inverse of workspace. 156
ip—Intensityplot.......... 157
jcp — Calculate J-coupling constant. 158
kw — Kaiserwindow., 158
Id—Listdata. 158
Idb — Load buffer intoworkspace 159
lim—Matrixlimits 159
lin—Lineannotation. 160
lis— Listsymboltable........................... 161
Im—Listmacro. 161
loa— Load vector frommatrix 161
log — Natural logarithm of work space. 162
Imd — Load theoretical vector. 162
Ipf — Linear predict first points. 163
Ipl — Linear predict lastpoints 164
Ips — Solvent suppression using linear prediction 164
Ipx — General linear prediction. 165
Irl—Find local extremum 166
Ivo — Load volume timecourse 168
Iwb — Load work space frombundle 168
mat—Openmatrixiiiiii 169
md—Modeldata 170
mf— Matched filter. L. 170
mgv — Matrix getdatavalue. 171

mpv-Matrix putdatavalue 171

mmp — Display memorymap. 171

mnu—Menumanager 172
ms — Magnitude spectrum L. 173
mul — Multiply the work space by anumber......... 174
mwb — Multiply work by buffer. 174
nd2 — Neighbor detection in 2D NOESY spectrum 175
nd3 — Neighbor detection in 3D NOESY spectrum 176
nex —Endofaloop.......... 178
no — Generate random noise. 178
nop—Nooperation. i 178
nor— Normalizedata 179
np—Nullplot........... 179
old—Recallold limits. 179
opn—Openoutputfile.......................... 180
opt — FELIX option license inquiry or license checkin and checkout180
ord — Matrix dimensionorder 181
ovc — Overlay contourplot. 181
pd2 — Prototype pattern detectionin2D 182
pd3 — Prototype pattern detectionin3D 185
pen — Defineanewcoloredpen................... 187
ph—Phasecorrection........................... 187
pic—Peak pickandlabel 187
ForlDspectrao 188
ForNDSpectra 188
piv — Set the pivot for phase correction 190
pla— Redisplay 3D object. 190
pol — Polynomial baseline correction 190
pop — Pop thedisplaystack 191
ppm — Convert Between pointsand PPM 191
prb — Residue type probability scoring. 192
prf—Formatted print 192
ps—Powerspectrum 193
psa — Suggest assignment for a set of patterns.. 193
psh — Push the work space onto the buffer stack 194
pso — Polynomial-based solvent suppression. 194
puf—Formatted put. 195
pur—Purgesymboltable........................ 195
put—Putrecord 196
pv—Putvalue........ 196
pxp — Automated peak assignment 196
gsb — Skewed sinebell window. 197
gss — Skewed sinebell squared window 198
ra—Read ASClldata 198
rb —Read Brukerfile................ 198
re—Read afile(oldformat) 199
rea — Read record from ASClIfile. 200

rec — Rectangle annotation 200

red — Reduce complextoreal 201

ref — Setshiftreference 201
ret — Macro subroutinereturn. 202
rev—Reverse 202
rf — Read FELIX for Windows file. 202
rft — Real Fourier transform 203
rf—Read JEOLfile 204
rMmM—Readmacrociiiiiiinnnnnn.. 204
rmx — Referencematrix. 205
rn — Read file (new format). 205
rph —Real-timephase. 206
rpl — Real-time polynomial baseline correction 206
rv—Read Varianfile........... 207
sar — Autoscreencommand L. 208
sb —Sinebellwindow L. 209
sca — Scale factor for dimension 210
seg — Integral segments, 210
sep — Separate real and imaginary 210
set — Setwork spacetoavalue.................... 211
shl—sShiftleft 211
shr—Shiftright. 212
smo — Binomialsmooth 212
sp—Stackplot. 213
sgz—Squeezeamatrix 213
srv —Setrangetovalue., 213
ss — Sinebell squared window 214
ssh—Signedshift 214
ssp — Synthesize spectrum from peak list. 215
ste — Stella peak picker 215
stb — Store work spacetobuffer 216
sto — Store vectortomatrix. 217
str — String manipulation operators 217
sub — Sub-string extraction. 218
swb — Store work spacetobundle 219
sys — Execute systemcommands 219
tex — Textannotation 220
til—Tileplot. 221
tim — A basic clock and chronograph 223
tm — Trapezoidal multiplication................... 223
ty—Typetext 224
tyf — Type afile of texttothewuser. 224
tym —Typetexttomotif......................... 224
unf—Unfoldwork 224
ver — FELIX version number and release date 225
vol — Integrate cross peak volumes. 225

wa — Writean ASCll datafile..................... 225

wai—Waitawhile 226

wm—Writemacro 226
wn — Write afile (new format) 226
wr — Write afile (old format) 227
xpa — Cross-peak assignments from shifts and spins 227
xpk — Cross-peak operations 227
xpl— Makealistofpeaks........................ 230
xps — Generate spins and shifts from cross peaks. 236
xsh — Exchange stack head with work space 236
xss — Simulated annealing assignment functions.. 237
xyl — Atom list manipulation 239
xyp — X,Y data pair manipulation. 241
Xyz — Atom manipulation. 244
Ze — ZeroWOrksSpace. 247
zf—Zerofill 247
zgt— Zerogreaterthan 247
Zi—Zeroimaginaryo 248
zlt—Zerolessthan 248
zr—Zeroreal. 248
zp—Nullplot...... 249

Symbol Reference 251

absint — Absolute intensity L 251
absmgl, absmg2, absmg3, absmg4 — Absolute magnitude peak search
WINAdOW SIZE. 251
animat — Animationswitch 252
annang — Annotationangle 252
annasz — Annotation arrow size................... 252
anncol — Annotationcolor 253
annfil — Annotationfile. 253
annlst — Annotation linestyle. 253
annpfx — Annotation prefix 254
annsiz — Annotation textsize 254
annunt — Annotationunits 254
autox, autoy, autoz — Autorotation X-, Y-, and Z-angle increments255
autpse — Autorotationpausec. ... 255
autrot — Autorotation switch 255
cntrot — Autorotationcount L. 255
axsobj — Axis objectswitch. 255
axtype — 1D AXIStype.o 256
blsize, b2size, b3size, b4size — Matrix brick size 256
basent — Baseline pointsentity 256
bcfrac — Baseline correct fraction 257
bckrad — Back-calculation cutoff radius 257
bigpt — Big pointinworkspace. 257

blkwht — Black/White reverse switch 257

button — Buttonstatus 258

celpxx —Cell Xpixels i 258
celpxy —CellYpixels, 258
center — Center plotswitch. 258
chi — Minimum chi-squarevalue 259
clmode — Contourlevelmode 259
cntrot — Autorotationcount L 259
colcur— Colorofcursor 259
conmod — Contour spacing modifier 260
contyp — Contour interpolationtype 260
cutoff — Cutoff for stack plot. 261
cycle—Colorcyclelength. 261
disize, d2size, d3size, d4size — Matrix size 261
dlvect, d2vect, d3vect, d4vect — Current vector. 262
datfil — 1D Datafile., 262
datpfx — 1D Datafileprefix 262
datsiz—Datasize i 262
datype —Datatype.........ccoiiiiiii. .. 263
dbafil — Databasefile 263
dbapfx — Database file prefix 263
deltax, deltay — Delta x and y for stack plot 263
dimen — Number of Matrix Dimensions. 264
dimplt — Number of plotdimensions. 264
disply — Current display type. 264
draw3d — 3D capability switch. 265
drwbox — Draw box switch 265
drwclv — Draw contour levels switch. 266
drwpks — Draw peaksswitch. 266
drwxpk — Draw cross peaks switch 266
dspmod —Displaymode 267
erase — Erase display switch. 267
etcpfx — Runtime filesprefix. 267
first—Firstpoint. 268
flxver — FELIX version number 268
fontsw —Fontswitch 268
fontsz—Fontsize 268
frsize—Framesize 268
gbroad — Gaussian coefficient. 269
gibbs — Gibbs filter switch 269
graysc — Gray scaleswitch 269
grid—Gridswitch. 270
gridco—Gridcolor............ . i i 270
gridst—Gridstyle. 270
hafwid — Halfwidth factor 270
harddv — Hardcopy destination. 271

hardmo — Hardcopymode 271

hardx0, hardy0, hardxs, hardys — Hardcopy origin and size271
hfwidl, hfwid2, hfwid3, hfwid4 — Minimum peak half width271

hilim — Current plot region high limits. 272
hndshk — HPGL plotter handshake 272
inbias, inslop — Integral bias and slope corrections 272
intolp — Integraloverlap. 273
item—Menuitem.......... 273
iwidth — Interval width for baseline correction 273
keyhit — Keyboard character struck 274
last—Lastpoint 274
Ibroad — Line broadening, 274
level —Contourlevel. 274
linpts — Lines/Points for draw command 275

loc3x0,loc3x1,loc3y0,loc3y1,loc3z0,loc3z1—3DLocatorendpointcoordinates
275

lolim1, hilim1, lolim2, hilim2, lolim3, hilim3, lolim4,hilim4 — Current plot

region low and high limits. 275
macfil — Macrofile 276
macpfx — Macrofileprefix 276
matfil — Matrixfile L. 276
matpfx — Matrix fileprefix 276
maxvol — Maximum volume slots inentity 276
mdIcfl, mdlcf2 — Model data coefficients 1 and 2 (matrix factor)277
mdlpke — Model data peak entity ID 277
mdlvle — Model data volume entity ID 277
mdlvsl — Model data volume slot number 277
menu — Menunameselected 277
mframe — Matrix framesize 277
minzee — Cutoff Z-magnetization for back-calculation . 278
mnufil —Menufile L 278
mnumod — Default frame position. 278
mnupfx — Menufileprefix 278
mscale — Matrix scale factor 278
msgfil — Messagefile 279
msgpfx — Message fileprefix 279
msgcl, msgc2, msgil, msgi2, msgrl, msgr2 — Character, integer, and real

message parameters. 279
ndctyp — Normalized device coordinate type 279
newhpglc — control contouring in HPGL plots. 280
newpostc — control contouring in PostScript plots. 280
nframe — Number of stack frames 280
nlevel — Number of contour levels. 280
norval — Normalizationvalue. 281
objmem — Object memory size limit. 281
orderl, order2, order3, order4 — Matrix dimension order 281
orient — Postscript orientation 281

ovrlap —Stackoverlap 282

paphgt —Paperheight 282

papwid — Paperwidth 282
pennum — Startingcolor. 283
phase0 — Zero-orderphase. 283
phasel — First-orderphase 284
picent— 1D peaksentity 284
pksent — Cross peakentity 285
pksobj — Peaks object switch. 285
pkstyl — 1D peak display style 285
pkunit — Units for pickingpeaks 286
plotdl, plotd2, plotd3, plotd4 — Plot dimension. 286
pltann — Annotationswitch 287
pltmod —Plotmode 287
pltobj — Plot object switch. 288
pltorg—Plotorigin............ 288
pltusr — Position plot manually switch. 288
posneg — Negative level switch 289
projl — Type of 1D projectiononto xaxis 289
proj2 — Type of 1D projectionontoyaxis............ 290
projct — Graphics projectiontype 290
projsz — Size of 1D projections 291
pwidth—Penwidth 291
redraw — Automatic backing store of plots. 291
refpt — Referencepoint. 292
refsh — Referenceshift. 292
rowinc—Row increment. 292
scale —Plotscalefactor. 293
schfil —Schemafile............ 293
schpfx — Schemafile prefix. 293
segent — Integral segmentsentity 293
segint — Segmented integral switch 294
sfreq — Spectrometer frequency 294
slant — Character slantangle. 295
smalpt — Small point in workspace. 295
stack —Stackdepth. L. 295
status — Commandstatus., 296
steang — Sterecangle 296
stereo — Stereoswitch L 297
stesep — Stereo separation. 297
stkord — 1D Stack display order 297
swidth — Spectralwidth 298
taucee — Correlationtime 298
thick — Character thickness. 298
thresh — Threshold for 1D peakpick 299
title — Spectrumttitle. L 299

tphas0, tphasl — Total zero and first-order phase. 299

value—Datavalue 299

vector — Vectorsinbundle, 299
verify — Macro verificationmode 299
volent — Volumeentityname 300
volobj — Volume object switch 300
wshift — Sinebell shift. 300
wskew — Sinebell skew. o L 300
x0pnt, yOpnt, x1pnt, ylpnt — Cursor position. 300
xangle, yangle, zangle — Eulerangles. 301
xcells, ycells — Number of charactercells. 301
xpixel, ypixel — Number of pixels. 301
xpklbl — Cross peak label switch 301
xsize, ysize —Plotsize. L. 302
xwalk, ywalk — Walking menu position. 302
xyzent — Coordinateentity 302
xzero, yzero — Plotorigin 303
YOPNt . 303
VIPNt L 303
yangle. 303
yeells. . 304
YPIXEl . 304
VSIZE L 304
ywalk ... 304
2741 (0 304
zangle. ... 304

Macro Examples 305

AdVIMAC . . oo 305
diag.mac. 307
dSS.MAC.o 309
eval_pointmac. 310
Ipf_ d2mac 311
madd.mac. 312
MSUD.MAC. 314
multmac 317
old2new.mact 318
PSI.MAC. e 318
PSrmac. 319
rev bundlemac........... 320
ZAPMAC vttt 321

Index 323

g')i How To Use This Book

FELIX 2002 FCL Command Language Reference is a complete guide to
the command language that underlies the FELIX program. It dis-
cusses the basics of the language, symbols and expressions, macros,
real-time displays, menus (and how to customize them), the data-
base, and commands. Appendix C, Macro Examples contains some
useful macros.

This reference is available only online at Accelrys’s website:

http://www.accelrys.com/doc/life/index.html.

Note: If you are prompted for a username and password at the
Accelrys documentation website, use the following:

Username: science

Password: faster

An index and table of contents are provided, and you may use the
searching capabilities of your browser to locate information.

You can also use the Accelrys Site Search at:

http://www.accelrys.com/search.html

Here, select All Documentation in the Search Area list. Enter
term(s) in the Search field, then click Search.

To print individual chapters of this guide, use your browser's print-
ing capability.

Note: Appendix A, Command Reference, and Appendix B, Symbol
Reference are very large files. Before printing them, you may
want to be certain you need all the information these sections
contain

The online help found at the Accelrys website provide more infor-
mation about the commands in the menu interface. For information

FELIX Command Language Reference/ March 2002 xiii

about using FELIX 2002, please consult the FELIX User Guide and FELIX Tuto-
rials books.

Who should use this guide

This guide is intended for advanced FELIX users who are interested in modi-
fying the user interface, writing macros, and doing other operations that
require the FELIX command language FCL.

What FCL does

Some of the things FCL allows you to do are:
Modify the menu interface
Write your own macros

Modify existing macros

Things to be familiar with
You will probably want to familiarize yourself with a few things before work-
ing with FCL.:
The windowing software on your workstation.
Use of the mouse on your workstation.
The FELIX 2002 menu interface.

Workstation requirements

Before you begin, be certain that you have these things available on your work-
station:

An installed and licensed copy of FELIX 2002.

A directory in which you can create subdirectories and files.

Related books

You can find additional information about general molecular modeling, struc-

ture determination, and NMR data analysis in several other books published
by Accelrys:

NMRchitect — Describes the theory of NMR data analysis and describes how to
use the NMRchitect software to analyze NMR data in the Insight Il envirn-
ment.

Insight Il — Describes the Insight Il molecular modeling program.

System Guide — Provides step-by-step instructions for installing and adminis-
tering Insight Il products in your operating environment.

Typographical conventions

Unless otherwise noted in the text, this guide uses the typographical conven-
tions described below:

Names of most items in the FELIX 2002 interface are presented in bold type.
For example:

Select the Process/ID Data Processing... menu item.

FELIX command lines are represented in a courier font. If the line contains

keywords you must type exactly, they are given in bold courier font. If a word

is something you must replace with a specific value (like a filename), it is indi-
cated in italic bold courier font. For example:

> maxtrixname rw control

. Introduction

What is FCL?

The FELIX Command Language (FCL) combines spec-
troscopic data-processing commands, a computer pro-
gramming language, and agraphical user interface (GUI)
protocol. This blend of tools gives FELIX its flexibility
and adaptability as an NMR data-processing environ-
ment.

You can issue an FCL command inside the Command
Window of FELIX mainwindow to call aspecific action.
For example, you can enter:

> mat yuin.mat w

to open awritable NMR matrix called yuin.mat.

Using atext editor, you can compose adocument (called
amacro) containing aseries of FCL commands, savethe
document asatext file, then execute the macro as needed
from the Command Window to compl ete a certain task.
For example, you can enter:

> .yuin

in the Command Window to execute a macro called
yuin.mac. See Chapter 4 for more detail s about compos-
ing macros.

Virtually the entire GUI layout and every action invoked
when you select amenu item or click aniconin FELIX
are macro-based. You can customize the FELIX layout
and actions by changing the relevant macros. To see
which macrosare being called during run-time, select the

FELIX Command Language Reference/ March 2002 1

Introduction

Preference/M acro Debug menu item, then select Show
macro namesin the dialog box.

The FELIX User Guide gives a detailed description of
how to use the standard interface to do virtually all of
your NMR processing. Most users will never require
more functionality than that provided by the standard
user interface.

This FELIX Command Language Reference Guideis
designed for advanced users who want to enhance, mod-
ify, and extend the abilities of FELIX for their special
reguirements. This guide contains complete descriptions
of al the elements that comprise FCL.

FCL commands are two or three |etterslong, and in this
documentation are presented in boldface type. Com-
mands are case sensitive, although command arguments
are not. (See “Case sensitivity” in Chapter 2, FCL
Basics.) Symbols are also boldfaced, while parameters
areitalicized.

Using this guide

¢

This chapter gives a brief introduction to the major components
of FCL.

Chapter 2, FCL Basics, explains the syntax of FELIX command
lines and the behavior of the FELIX command interpreter.

Chapter 3, Symbols and Expressions, discusses the use of symbols
and arithmetic expressions.

Chapter 4, Macros, details writing macros and introduces the
directives that control macro execution.

Chapter 5, Menus and Control Panels, illustrates the building of
real-time display macros that generate animated graphics, show-
ing the effect of changing command parameter values in real
time.

Chapter 6, The Database and Tables, presents a detailed explana-
tion of the database commands and explains how to store and
extract information.

2 FELIX Command Language Reference/ March 2002

FCL command line

¢ Appendix A, Command Reference, lists the FCL commands and
gives short descriptions of how they are used.

¢ Appendix B, Symbol Reference, lists the symbols used by FCL and
gives descriptions of how they interact with FCL commands.

¢ Appendix C,

Macro Examples gives a few examples to get you

started writing your own macros.

NoteAll references cited in this guide are listed in
Appendix A, References of the FELIX User Guide.

FCL command line

def swidth

def swidth

ft

This section describes some of the basics of FCL and the
conventions used in this document to describe the com-
mand syntax. When acommand is shown in its genera
form, each parameter isindicated by an italicized_word.
For exampl e, the descriptive explicit forms of the com-
mand that defines the width of a spectrum (swidth) are
shown below.

spectrum width (as described in the manual)
4386 (as you would enter it)

To execute an FCL command, press <Enter> after you
have finished typing it.

The commandswithin FCL consist of two- and three-let-
ter acronyms that symbolize the action of the command.
Each command performs some function or changes the

state of the program in some way. Two examples of FCL
commands are shown below:

ft causes FELIX to perform a Fourier transform on the
datain theworkspace, and hcp generates a hardcopy out-
put of the current spectrum display.

A list of the FCL commands along with a detailed
description of their functionsisfound in Appendix A,
Command Reference.

FELIX Command Language Reference/ March 2002 3

Introduction

Symbols and expressions

FELIX alowsyou to use symbolsto represent any value
or parameter. This symbolic substitution allows flexibil-
ity within the program and within the macros, which in
turn generates automatic processing within FELIX.
There are two distinct types of symbols within the pro-
gram: reserved symbols and user symbols.

Reserved symbols

Reserved symbols report the current status of the pro-
gram or workspace. For example, when you read an FID
or spectrum, the reserved symbol datfil is defined auto-
matically asthe name of that file. At alater pointintime
(usually within a macro), that same file may be read by
using the reserved symbol datfil instead of entering the
filename explicitly.

In addition, reserved symbols are used to define items
such as the spectrum width (swidth), the number of con-
tour levels (nlevel), and the datatype (datype). The
quantity and names of reserved symbols are constant.
They areinitialized by FELIX when the program begins
and cannot be deleted

User symbols

User symbols are any other symbols that are named and
initialized by you or amacro while FELIX is running.
Examples include the loop counter defined by the for
command and the result of the eva command. You can
initially define as many user symbols as you want, and
you can delete them at any time.

FELIX can aso evaluate complex mathematical expres-
sions. Sometimes you may want to express a number or
asymbol value arithmetically in terms of other numbers
or symbols. FELIX performs expression evaluation,

where an expression may contain numbers, symbols, and
the arithmetic operators plus (+), minus (-), multiply (*),

4 FELIX Command Language Reference/ March 2002

Macros

Macros

and divide (/). Expressions may a so contain trigonomet-
ric, logarithmic, and datatype functionslike sin, cos, log,
int, etc. Expressions must be enclosed in parentheses and
may contain internal parentheses defining the order of
evaluation. Theexpressionsused in FELIX aresimilar to
those found in the BASIC and FORTRAN programming
languages.

See Appendix B, Symbol Reference, for more detailed
information onindividual reserved symbols. See Chapter
3, Symbols and Expressions, for more information on
general symbol use and expression evaluation.

Macros are an essential feature of the FELIX data-pro-
cessing approach. A macro isatext file containing a
series of FELIX commands that directs the program to
perform a specific task. In addition to direct commands,
amacro can contain symbol substitution, arithmetic
expressions, and flow-control statements (i.e., for loops,
if/then/el se statements, goto’s, and subroutine cals). In
effect, macros combine the capabilities of a program-
ming language with the standard capabilities of FELIX,
allowing you to design customized processing proce-
dures.

FELIX comeswith alibrary of macros capable of many
common processing tasks. Using most text editors, you
can modify FELIX macrosto fit your specific needs. For
exampl e, the apodi zation function in the example macros
will probably be customized by each user.

In addition to using macros for custom data processing
and data analysis tasks, macros are also used to imple-
ment the FEL IX GUI. Advanced FEL I X userswill create
menus and control panels to design a custom environ-
ment.

FELIX Command Language Reference/ March 2002 5

Introduction

Menus

The FELIX GUI contains a variety of menubars, pull-
down menus, icons, and control panelsthat interact with
the user to simplify data analysis and processing. The
menu interface covers most aspects of NMR data pro-
cessing, display, and analysis.The standard FELIX GUI
exceeds the needs of most research groups.

While Accelrys has tried to include and place rel ated
processing and applications conveniently near each other
within the GUI, it couldn’t predict the needs of specific
users. You can customize the FELIX interface to speed
and simplify your NMR data processing and analysis by
editing the menuinterface macros provided or by writing
your own.

For example, you can add amenu item to execute one of
your own macros from within the interface. While this
minor change to the menu system will not affect other
aspects of the interface, it will enhance the power of the
program for your specific application.

If your applications require repeated access to certain
pulldowns, that pulldown can be removed from the top
menu bar and placed el sewhere on the screen for easy
access.

Creating a modification to the menu interface takes less
than 15 minutes for someone experienced in writing
FELIX macros. Making these changes require no access
to source code.

The database

The FELIX database provides fast and efficient sorted
access to large sets of spectrum data. Many FCL com-
mands directly generate or read whole datasets, like ND
peakpicking and volume integration. Generating base-
line points creates a dataset in the database, and the com-
mands for baseline correction read that same dataset of
baseline points to flatten the spectrum’s baseline.

6 FELIX Command Language Reference/ March 2002

The database

FCL alsoincludes an extensive set of core database com-
mands that provide explicit access to every primitive
function the database was designed to perform. You can
have complete “read and write” access to any informa-
tion stored in the database, whether it was generated by
an FCL command or by amacro you wrote. This pro-
vides robust functionality with respect to storing, retriev-
ing, and mani pulating datasets of virtualy any type.

One of these core database functionsis the entity editor.
It functions like a spreadsheet, giving you a graphical
way to edit, add, and delete information in a dataset.

Please see Chapter 6, The Database and Tables, for more
detailed information about the FELIX database.

FELIX Command Language Reference/ March 2002 7

Introduction

8 FELIX Command Language Reference/ March 2002

g")i 2 FCL Basics

This chapter describes the essentials of using the FELIX command
language (FCL). The intent is to provide a foundation for using FCL
commands in simple and advanced implementations.

FELIX 2002 is a command- or event-driven software application.
Software in this class waits for you to issue a command, acts upon
that command, completes the task, and returns to a standby condi-
tion, awaiting the next command.

FCL is the fundamental interactive element in FELIX 2002. FCL is
composed primarily of commands and their associated parameters,
with a precise and simple syntax. There are more than 200 distinct
FELIX commands, and nearly 200 associated reserved symbols.

Although many users interact with FELIX solely through the graph-
ical user interface (GUI), the interface is mostly written using FCL.

Accessing FCL

You can directly access FCL by clicking the primary mouse button
in the command window within the main FELIX window. If the
command window was closed, you can open it by selecting View/
Command Input from the main menu.

Virtually any task that can be performed with the GUI can also be
accomplished by using FCL directly. Whether you want to conduct
novel processing and/or analysis procedures that are not available
through the GUI, or to conduct standard tasks directly, you always
have the option of issuing FELIX commands, either as discrete com-
mand statements or as a group of commands in a macro file.

FELIX Command Language Reference/ March 2002 9

FCL Basics

Commands and command arguments

As an example, a typical FCL command statement might be:
rn myfile.dat

Here, the command rn (which specifies that a data file be read) is
separated by a space from an argument, which in this case specifies
the datafile to be read.

Many FELIX commands expect and require one or more associated
input arguments, although not all of them do. For example, in these
commands:

rn myfile.dat
ft
dr

only the rn command requires an argument, whereas the ft and dr
commands execute without additional arguments.

FCL operates in two distinct functional states: command-line mode
and macro mode. Command-line mode is a fully interactive text
interface, as is used in the examples above.

If you are in command-line mode and you issue acommand without
associated arguments when that command normally requires them,
then FELIX prompts you to provide the appropriate input. For
example, if the rn command is issued without a datafile name,
FELIX asks for one, as shown below:

rn
file=myfile.dat

Many FELIX command arguments are reserved symbols (see Chap-
ter 3, Symbols and Expressions) and, where a reserved symbol has
already been defined, as above (assuming you issued all the above
commands), the parameter prompt displays the current value of the
symbol. You can then accept the current value (by pressing <Enter>)
or supply an alternative value (a filename in this case). If the com-
mand argument(s) have no current value, the prompt appears sim-

ply as:

10 FELIX Command Language Reference/ March 2002

Commands and command arguments

rn
file=

Unlike command-line mode, macro execution mode is not an inter-
active state. Therefore, in designing a macro you must ensure that all
commands used in the macro file contain all the appropriate input.
This is not to imply that macros must be written using specific literal
input designations, however. Symbolic input and output are dis-
cussed in Chapter 3, Symbols and Expressions.

Case sensitivity

FCL is case-insensitive; that is, FELIX 2002 does not distinguish
whether input is upper or lower case. In fact, unaugmented charac-
ter strings that are composed of mixed or uppercase text are inter-
preted as if they are all lowercase. For example, the following
command statements are equivalent:

rn myfile.dat
rn MYFILE.DAT
rn MyFilLe.DaT

Of course, you may prefer to distinguish between upper or mixed
case in FELIX. To do so, you must signal that you want the input
string to be interpreted literally, by enclosing the string in single
quotation marks. For example, each command statement below is
distinct from the others:

rn ‘myfile.dat’
rn 'MYFILE.DAT’
rn 'MyFiLe.DaT’

For each of these statements, FELIX tries to find and read a datafile
whose name is exactly as shown.

FELIX Command Language Reference/ March 2002 11

FCL Basics

Caution: Remember that, although FELIX 2002 is case-insensi-
tive with respect to command arguments, the commands them-
selves must contain only lowercase characters. For example:

rn myfile.dat

is a perfectly valid command phrase. However, FELIX cannot
interpret the following:

RN myfile.dat
or:
Rn myfile.dat

In addition to providing case-sensitivity, the single quotes may also
be used to generate strings containing spaces. For example, using
the def command (which allows you to define a symbol value)
together with a string in single quotes, you can define phrases as
symbol values:

def mytext ‘This is a test message’

lis mytext

User Symbol Value

mytext This is a test message

Errors in FCL commands

If FELIX cannot recognize a submitted command, it prints an error
message together with what it interpreted as an erroneous com-
mand in the output window. For example:

RN myfile.dat
Not a command: RN

Whenever FELIX indicates that a command phrase is invalid in
some way, a special symbol named status also records the event by
assuming a non-zero value.

12 FELIX Command Language Reference/ March 2002

Commands and command arguments

Note: The symbol is a variable. You can check its value by typ-
ing the command: 1is status in the output window.

In this example, the event is said to have generated "bad status."
There is little significance to this occurrence if you are in command-
line mode, since a subsequent successful command execution resets
the status to zero (clear status).

The effects are more problematic when such an error occurs during
execution of a macro file. However, if "bad status" occurs during
execution of a macro, no subsequent commands in the macro are
executed. This feature is designed to protect datafiles and to avoid
catastrophic failure of FELIX in the event of a fatal command error.
The status may always be cleared manually by setting status to zero.
(See Chapter 3, Symbols and Expressions.)

Display and context effects

Although many of the 1D vector-manipulation utilities (e.g., ft, rev,
exc, and red) act on the entire contents of the 1D workspace regard-
less of whether the entire vector is displayed, some FELIX com-
mands are display- and context-oriented.

For example, the pic utility, which discriminates and records local
extremain 1D, 2D, and ND spectra, specifically alters its function to
agree with the most recently displayed data. If an expanded region
of a 1D vector is drawn and the pic command is issued, as in:

exp
pic

entity = pic:1d picks
select mode = 0

Here, the pic command searches for local extrema only along the
portion of the 1D workspace that is currently displayed and then
records the results in the default entity pic:1d_picks.

If, on the other hand, you are considering an expanded region of a
2D matrix file, that is:

cp

FELIX Command Language Reference/ March 2002 13

FCL Basics

pic

(0=Pos, 1=Abs_Mag, 2=Neg) : 0
entity = xpk:peaks

select mode = 0

then the pic utility searches only the displayed region for 2D local
extrema, based on the distinct 2D/ND extrema-discriminating crite-
ria that are specified using the pic command arguments (see the pic
-- Peak pick and label command in Appendix A, Command Refer-
ence). The results are then recorded in the default 2D/ND entity
xpk:peaks.

Other commands that are display- and/or context-sensitive include
drx, fit, and int.

Line continuation

An individual command statement may be longer than is conve-
nient or desirable (maximum allowed length is 256 characters).
When writing a macro, you may want to continue long command
statements over several lines to improve their readability. To do so,
indicate that the end of a line is not the end of a command statement
by ending the line with a special line-continuation symbol. In FELIX
that symbol is the vertical bar |, which is entered by pressing
<Shift>+\ on most keyboards. Using the pic command example
above, we might alternatively have submitted the following equiv-
alent command statements:

pic 0 xpk:peaks 0
or:

pic 0 |

xpk:peaks 0
or:

pic 0 |

xpk:peaks |

14 FELIX Command Language Reference/ March 2002

File prefixes and suffixes

Note: Line continuation does not work in command-line mode.
It works only in macro mode. The continuation line symbol
must be separated by at least one space from the last character
in the command phrase. That is:

pic 0]
xpk :peaks |
0
is interpreted literally as the command phrase:
pic Oxpk:peaksO

which cannot be interpreted because it does not contain the
required spaces

File prefixes and suffixes

FELIX store data, graphical objects, processing parameters, and
analysis information in a variety of external files. The convention of
naming datafiles with the suffix .dat and matrix files with the suffix
..mat is an artifact of the mechanism by which FELIX accesses the
files it needs for various processing and analysis activities. For
example, if you submit the command statement:

rn myfile

the FELIX interpreter recognizes that the rn command has been
invoked. FELIX then affixes the directory prefix (i.e., path) to the file
using the datpfx symbol and appends the .dat file extension to the
file before it begins searching for that file.

Alternatively, if you submit the command statement:
rn myfile.dat

FELIX affixes the appropriate directory prefix to the file, but does
not add a suffix.

Thisapproach provides maximum flexibility and compatibility with
other naming conventions. For example, if you submit the com-
mand statement:

FELIX Command Language Reference/ March 2002 15

FCL Basics

re oldfile.ser

FELIX affixes the appropriate data directory prefix and searches for
a file with the older .ser datafile suffix.

Macro file formats

Comment symbols

It is often convenient to enhance the readability of macro files by
using comments. Comments may describe the macro function or
remind you of important datafiles or argument dependencies.

The FELIX comment symbol is the semicolon (;). Below is a simple
macro that demonstrates the use of comments:

ty Here is my macro! ; Type a message
;ty This line will not appear

rn myfile.dat ; Read my data file

dr

end

During execution, this macro prints only the line: "Here is my
macro!"; then the macro reads the specified data file and draws it.
The macro does not display anything following any semicolon on a
line.

Tabs and spacing

Spaces and tabs may be freely used in macros to enhance readability,
as shown below:
c**mymac .mac
; This macro counts to 10
for loop 1 10

ty Count=&loop

16 FELIX Command Language Reference/ March 2002

Macro file formats

next

end

FELIX Command Language Reference/ March 2002 17

FCL Basics

18 FELIX Command Language Reference/ March 2002

(3 Symbols and Expressions

Symbol substitution is one of the most important and useful tools in
FELIX 2002. Symbols are used in much the same way as variables in
algebra; you can define processing algorithms that incorporate a
symbol, and later you can decide on a value for the symbol. You can
also store important numbers in symbols so that they may be
quickly recalled later.

FELIX symbols are text strings that are evaluated at command exe-
cution time. Symbol names may be up to eight characters long and
may contain any alphanumeric character. Any single symbol value
can contain up to 128 characters.

To display the current symbol definitions and their values, use the
list command (lis). The lis command makes use of the wild card
character (*). For example:

lis h=*

shows values for only those symbols beginning with the letter h. The
result is displayed in the FELIX text-prompt (or parent) window. The
output from the above example might look like:

1 hafwid 2
2 hardx0 0
3 hardxs 0
4 hardy0 0
5 hardys 0
6 hardmo 21

7 hiliml O

9 harddv temp.plt

FELIX Command Language Reference/ March 2002 19

To delete or purge one or more of the user symbols, uses the pur command.
This command also makes use of the wildcard character (*). For example:

pur count
deletes the user symbol count, and:
pur loop*

deletes all user symbols that begin with the letters "loop".

Caution: Giving the pur command with no parameters does
nothing. However, be aware that:

pur *

deletes all user symbols. This should only be done very carefully,
if at all.

Reserved symbols

An important subset of the symbols used by FELIX are the reserved symbols.
FELIX uses several reserved symbols to hold information about the internal
structure of the program and data. Some reserved symbols define the current
graphical state of the program, and others remember the current datafile
names and display features. By referring to the proper reserved symbols, your
macros can find out such things as whether a matrix is open, how large it is,
the last contour level drawn, and whether the last macro command was exe-
cuted successfully.

Types of reserved symbols

Reserved symbols generally fall into one of two classes: those that affect a sub-
sequent command, and those that are updated as a result of a command’s exe-
cution.

Reserved symbols that define the graphical state of the program

An example of reserved symbols that define the graphical state of the program
are those symbols that are related to the contour plot command (cp). For each
contour plot, certain reserved symbols define how the contour plot appears.
These reserved symbols include those that define the contour level (level), the
number of levels (nlevel), the contour level mode (cImode). Whenever the
contour plot command is executed, FELIX looks at the current values of spe-
cific reserved symbols to determine what should be plotted.

Similarly, whenyou try to read a 1D datafile with the re or rn command, FELIX
looks at the values of the symbols datfil and datpfx to determine the current
datafile’s name and the current data directory.

The values of the reserved symbols described above are usually set within con-
trol panels, but they may also be defined with the def command (see below).

Reserved symbols that are updated as a result of a command’s

execution

The second class of reserved symbol is exemplified by the datsiz symbol. This
symbol contains the current data size as a number of points.

Although you can change the value of datsiz using control panels or the def
command (see below), the symbol’s value is automatically updated to the cur-
rent data size after reading a datafile or loading a 1D vector from a matrix.
Likewise, when FELIX reads a 1D datafile, the reserved symbol datype is
changed automatically to reflect the appropriate datatype, whether it is real or
complex.

Other reserved symbols of this class include d1size (the size of the current
matrix in the D1 dimension) and matfil (the name of the current matrix). These
are changed when you open a matrix.

A complete list and definitions of the reserved symbols are given in Appendix
B, Symbol Reference. In addition, each command in Appendix A, Command Ref-
erence describes the reserved symbols that affect that command and those sym-
bols that are updated by execution of the command.

User-defined symbols

You may also define user symbols. In general, user symbols are employed to
save specific values so that they may be recalled later. In addition, user sym-
bols are applied to remember the current state of the menu interface. For exam-
ple, when a toggle or switch value is set, user symbols are included to
remember that state or value.

Defining symbols and their values

def command

cdf command

FELIX includes several ways to define symbols and their values.

One method to define symbols and their value is to use the define symbol com-
mand (def). For example, to set the value of the symbol filnam to the string
"test", enter:

def filnam test

This command is used throughout FELIX macros, especially in the macro rou-
tines used for data processing. The def command may also be used to define
reserved symbols such as level, which defines the lowest plot level for subse-
quent 2D plots.

The cdf command (conditional define) lets a macro define a symbol only when

that symbol does not yet exist. This gives greater flexibility when writing mac-
ros, because you can make sure a symbol exists and has a valid value without
changing its previously defined value. Thus, you can make a macro that is exe-

cuted many times, yet only the needed symbols initialize the first time
through, without any special effort.

eva command

Another way to define symbols is the eva command. It evaluates arithmetic
expressions, mathematical functions, and database functions, and stores the
resulting value in a symbol. More information on expressions and functions
appears later in this chapter.

As the result of a command

Many FELIX commands accept a symbol name as the last parameter on their
command line and define that symbol’s value to reflect the answer or status of
that command’s result. For example, the command:

xpk who &pksent -1 whoitm

returns the item number of the cross peak that the user selected with the
crosshair cursor. The symbol whoitm gets defined to the value of a cross-peak
item number. If no cross peak was selected, whoitm gets the value zero.

Another example shows how to convert a data position in points into ppm:
ppm 0 0 512.0 ppmval

This command calculates the ppm position for datapoint 512 in the current 1D
workspace and defines the symbol ppmval as that value.

A third example shows how to extract the reference information for one
dimension of a matrix using the rmx command:

rmx -2 rfreq rwid raxis rpnt rval rtext

This command statement extracts the reference information for D2 from the
current matrix. It defines six symbols with values corresponding to spectrom-
eter frequency, spectrum width, etc.

Defining symbol values from control panels

The most common mechanism for defining symbol values in FELIX 2002 is
from within its control panels. These graphical user interface (GUI) compo-
nents prompt you for symbol values by using text explanations, switches, tog-
gles, buttons, and scrolling list boxes. FELIX presents all the available choices
in a format that simplifies making a selection, while minimizing the possibility
of allowing invalid input. Almost every element in a control panel defines a
symbol to reflect its state or contents. A more detailed description of defining
symbols using control panels is found in Chapter 5, Menus and Control Panels.

Symbol substitution

Symbol substitution is one of the most important and useful tools within
FELIX 2002. To access and use the value of a symbol, you must precede the
symbol name with an ampersand (&). Whenever FELIX encounters an amper-
sand in acommand line, it attempts to perform symbol substitution on the text

string that follows the ampersand. For example, if the symbol filnam currently
has the value "test", the command line:

rn &filnam
is interpreted as:
rn test

before it is executed. In this example, FELIX attempts to read a datafile named
test.dat. The symbol filnam has been replaced by the text string "test" in the
macro.

You can use the value of the reserved symbol datsiz in acommand, as follows:
sb &datsiz 0

which applies a zero-degree shifted sinebell function over the number of
points specified by the symbol datsiz.

Complex symbol substitution

Some applications require more complex symbol substitutions. The following
examples illustrate a few of the many possibilities.

First, asymbol can be concatenated with normal text or numbers. For example:
rn testé&number

reads a file named testl.dat if the value for the symbol number is equal to the
number one. In a macro, the symbol number could be changed at strategic
points, allowing you to read a series of datafiles with a single read statement
containing a symbol variable. Such use of symbols may be necessary when
transforming 3D data, because the initial data in these large matrices may be
contained within more than one serial file.

Second, two symbols can be concatenated by placing the symbols adjacent to
each other. If the symbol filnam had a value "abc" and the symbol number had
a value "001", the command statement:

ty &filnam&number

would beequivalent to ty abc001. Inthismanner, several symbolic components can
be combined into asingle string.

Finally, symbol substitution is recursive, as illustrated by the following exam-
ple. If the symbol filnam had a value of "abc" and the symbol abc had a value
of "hello", the following command statement:

ty &&filnam
would produce "hello". In this case, the sequence of substitution is:

1. Find the string for the symbol &filnam and replace it with its value "abc",
thereby leaving "sabc" on the command line

2. Since an ampersand remains on the command line, do another symbol sub-
stitution.

In the example, the
namely "hello".

&abc" string is replaced by the value of the symbol abc,

It is also possible to delay symbol substitution until later, by adding an excla-
mation point (!) to the beginning of a symbol name. For example, the com-
mand statement:

def test !&filnam

defines the symbol test to literally be &filnam. The most common use of this
symbol-definition method is in combination with the macro put command for
building macros from the FELIX command language.

Local symbols

FELIX 2002 supports two classes of user symbols: local and global.

Local (user-defined) symbols are used only in the macro in which they are
defined and are automatically purged when that macro is finished. In addi-
tion, multiple macros can use the same (local) symbol names, without any risk
of changing another macro’s local symbols.

All local symbols begin with an underscore, "_". This is the only difference
between local and global symbols.

Defining and using local symbols is the same as for global symbols. The fol-
lowing example revises the simple macro testl.mac to use a local symbol
instead:

1 c**testl.mac

2 for count 1 5

3 ty Count = & count
4 next

5 ex &return

6 end

As soon as this macro is finished, the symbol _count becomes undefined.

Note: In writing macros, all loop counters and other symbols
used locally in the macro are preferred over local symbols. This
keeps the size of the symbol table from getting too large and
minimizes the chance of macros causing unintended side effects
on other macros

Global symbols

FELIX 2002 supports global user symbols in addition to local reserved symbols
and local user symbols (see above). This feature greatly enhances the flexibility
of working with multiple connected frame layouts.

By default, the value of a symbol is local to the graphics frame where it is
defined. This allows a frame to act independently, without affecting the con-
tent or behavior of other frames. To share symbols between frames, it is neces-
sary to explicitly export or import the symbol values to or from another frame.

While this notion of local symbols is good for working with multiple indepen-
dent frames, it can cause significant problems when working with multiple
connected frames all operating on a common dataset.

Global user symbols address this problem. All global user symbols are always
known to all frames, and defining the value in any one frame defines that sym-
bol globally in all frames.

Defining global symbols

To identify a symbol as global rather than local, begin the symbol name with

the character string "g_". All symbol names beginning with"g_"are global, and
all other symbols are local. There are no global reserved symbols, only global
user symbols. All the rules for symbol substitution are exactly the same for glo-
bal symbols, and a global symbol may be used anywhere a local symbol may
be used.

Note: For optimal speed when using FELIX, do not use more
global symbols than needed. Local user symbols have some-
what faster lookup access, and too many global user symbols
can slow down all symbol lookup access. A good rule of thumb
is to limit the number of global symbols to no more than ten per-
cent of all user symbols.

Arithmetic expressions

FELIX 2002 allows arithmetic expressions to replace any numeric parameter.
An arithmetic expression may contain the arithmetic operators plus (+), minus
(), multiply (*), divide (/), and power (©), with left and right parentheses
being used to define the order of operations. The syntax for expressions within
FELIX is exactly the same as in FORTRAN or BASIC. FELIX also supports the
unary (-) operator, which negates the variable, symbol, or expression immedi-
ately to its right.

When used for numeric parameters, arithmetic expressions must be enclosed
in parentheses without any space between the numbers, operators, and paren-
theses. This allows FELIX to evaluate the expression before passing the param-
eter value on; otherwise, the parameter would contain non-numeric characters
and be uninterpretable.

Sometimes you may want to force evaluation of an arithmetic expression: the
eva (evaluate) command is useful for doing this. For example:

eva temp (4*3+1)

forces the value of the symbol temp to be 13.

Remember: Symbol values are just character strings. FELIX
does not interpret them as numbers until they are used as
parameters by a command.

Expressions are even more powerful when they are combined with user-
defined symbols. For example:

eva temp (4*3+&shift)

determines a number for the symbol temp, whose value depends on the cur-

rent value of the symbol shift. The ability to evaluate arithmetic expressions in
combination with symbols provides a very powerful method of data manipu-
lation.

Expressions are most often used within FELIX for determining data character-
istics. For example, to determine the number of points currently displayed on
the screen, the following expression can be used:

eva scnsiz (&last-&first+1)

The value for the symbol scnsiz is the difference between the symbols last (the
last-displayed datapoint) and first (the first-displayed datapoint). After the
above expression, your macro would usually contain a sequence of commands
using the value of scnsiz.

A slightly more complex expression finds the value of the midpoint displayed
on the screen:

eva midpt ((&first+&last)/2)

Another use for expression evaluation is to manipulate values found in the
database. For instance, specific elements can be loaded into symbols, with the
resulting symbols being evaluated via expressions.

A simple example is to find the separation between two resonances found in a
1D spectrum. First, load the first two resonance positions into the symbols
cenl and cen2 using the standard database-access methodology:

dba element load pic:1d picks.l.cenpnt cenl
dba element load pic:1d picks.2.cenpnt cen2
Next, evaluate their separation, using symbol evaluation:
eva separ (&cen2-&cenl)
To view the resulting symbol for the separation, use the lis command:
lis separ

Or within a macro, use the ty command to print comments along with symbol
values to the parent window:

ty Separation between item 1 and 2 is: &separ

In a macro, you may also check to ensure that the resultant value is a positive
number, and if it’s not, take its absolute magnitude:

if &separ 1t 0 then
eva separ (abs(&separ))
eif
A more complicated example of expression evaluation makes use of an expo-
nential or power evaluation. The example shown below uses NOESY cross-
peak volumes to measure distance constraints. This example is used for mea-
suring proton-proton distances from an NOE volume at a single mixing time

by using the sixth-power dependence ratio as it relates to a fixed distance (dis-
sum) and volume (volsum):

dba element load &volent.10.voll voluml

eva dist ((((&dissum)”6.0)*&volsum/&voluml)”(1.0/6.0))
The distance may be further modified to reflect upper and lower bounds:

eva lower (&dist-(&dist*0.1))

eva upper (&dist+ (&dist*0.1))

ty Lower bound is: &lower

ty Upper bound is: &upper

Integer vs. real expressions

FELIX 2002 supports both integer and floating-point arithmetic expressions.
Several algorithms require integer division.

When any of the operands in the expression has a decimal point, then the
expression is evaluated as real and the result is real. If no decimal points are
present in the operands, then the expression is evaluated as integer and the
result is integer. Thus there is a difference between the following two values:

eva int (17/2)
eva real (17.0/2.0)

The value of int is 8, and the value of real is 8.5.

Complex mathematical functions

FELIX 2002 allows some arithmetic functions to be evaluated and saved as
symbols. These mathematical functions can appear anywhere that simple
expressions may be used. The arithmetic functions currently supported are:

abs - absolute value

acos - arccosine

asin - arcsine

atan - arctangent

Cos - cosine

exp - exponential

float - turn integer to real

int - truncate real to integer

log - natural logarithm

log10 - logarithm base 10

nint - round real to nearest integer
ran - random number generator
sqrt - square root

sin - sine

tan - tangent

The trigonometric functions require all angles to be in degrees. These functions
are combined using the standard evaluation nomenclature to calculate result-
ant values.

The ran function returns a random value between zero and the value of its
argument. For example, ran(1.0) returns a value between zero and one, and
ran(500.0) returns a value between zero and five hundred. It may be used in
any arithmetic expressions and in the eva command:

eva value (ran(1.0)

Working with the example above for finding the absolute value of a negative
peak separation, we can use the following sequence of commands in a macro:

if &separ 1t 0 then
eva separ (abs(&separ))

eif

In other words, the above "if/then/else" sequence could be replaced by the
absolute value calculation, since only positive values are acceptable in this
instance.

Another example is used to ensure that each dimension of a new matrix has a
size of root 2:

1

2 eva n2size (log(&d2size) / log (2.0))
3 eva n2int (nint (&n2size))

4 if &n2size eq &n2int onward

5

Again, examples such as these may be added to your own macros.

Database functions

FELIX 2002 supports one other class of functions that evaluate the state of
database components.

These functions are only valid in the eva command and cannot be combined
on the same command line with other functions or expressions. The form of all
database functions is db$nnnn(arg), where nnnn is the function name and arg
is the argument passed to the function. More information can be found in
Chapter 6, The Database and Tables.

The function:
eva open dbSopen ()

determines whether a database is open. The symbol open is set to zero (not
open) or one (open).

The function:

eva exist dbsSentity (xpk:peaks)

determines if an entity with the name xpk:peaks exists in the current database.
The symbol exist is set to zero if no entity with that name exists and to non-
zero if the entity does exist.

The complete list of database functions is shown below:

db$open() is a database open?
dbs$entity(ent) does an entity named ent exist?
db$val(ent.item.elem) extract one value from database
dbsis_item(ent.item) does an item number item exist?

db$big_item(ent) return the biggest item number in entity
db$schema(ent) return the schema name for this entity
db$occur(ent) return the occurrence count for this entity

db$element(ent,elem) find an element number by its name

(4 Macros

Macros are an essential feature of the FELIX data processing philos-
ophy. Macros combine the capabilities of a programming language
with the standard capabilities of FEL1X 2002, allowing you to design
customized processing procedures.

A macro is a text file containing a series of FELIX commands, which
together perform a specific task. You can edit a macro file using most
text editors. In addition to direct commands, a macro can contain
symbol substitution, arithmetic expressions, and flow control state-
ments (that is, for loops, if/then/else statements, goto’s, and sub-
routine calls).

FELIX 2002 comes with a library of macros that execute many com-
mon processing tasks. You can modify these macros to fit your spe-
cific needs. For example, the apodization function in the example
macros in Appendix C, Macro Examples, will probably need to be dif-
ferent for each user.

In addition to using macros for custom data-processing and -analy-
sis tasks, macros are also used to implement the FELIX 2002 graph-
ical user interface (GUI). In fact, the advanced user will find it easy
to create control panels and menus to design a custom environment.

Macro directories

You must store custom macros in directories where FELIX can find
them. The FELIX 2002 macros that drive the GUI are found in the
macros folders under the installation directory (by default it is
C:\Program Files\Accelrys\Felix 2002. This directory is defined by
the reserved symbol macpfx. The user macros can be stored in a
directory defined by the reserved symbol macpf4. To keep things
simple, you should initially keep all user-written macros in the
directory defined by the symbol macpf4. The maximum length for a

FELIX Command Language Reference/ March 2002 31

directory pathway is 128 characters, the same as the maximum length for a sin-
gle symbol value.

When FELIX searches for macro files, it first looks in the current working direc-
tory, then in the directory defined by the symbol macpfx. This symbol is given
an initial value in the .felixrc.ini configuration file the installation directory (by
default itis C:\Program Files\Accelrys\Felix 2002) that defines the initial
directory pathway so the GUI runs by default. If a named macro is not found
in the directory defined by the macpfx symbol, FELIX then searches in the
directory defined by the symbol macpf1. This logic continues up to the direc-
tory defined by the symbol macpf9.

Writing macros

You can write or edit a macro while still running FELIX 2002. To create or
change a macro, it is easiest to use Notepad or another text editor. Any editor
may be used as long as the macro files do not contain formatting characters and
do contain standard carriage control.

It is standard for the first line of any macro to contain the macro’s name,
though this item is optional. FELIX ignores any macro line that starts with c**.
The beginning of a typical macro is shown below. Note that the line numbers
at left are used for reference only, and should not be included in the macro:

1 c**users.mac
2 set 0

3 dr

4

Macros may also contain tab characters and blank lines, so that they may be
organized so as to enhance readability. In addition, any characters that come
after a semicolon (;) are ignored by the macro interpreter. This makes it easy to
add comments to macros as shown below:

1 c**users.mac

2

5 fra o 10 10 10 10 ;Open first graphics frame

6 fra t 1

10 fra o 30 30 300 300 ;Open second graphics frame
11

12

13

14 set 1

15 sb 600 90

16 dr ;draw sinebell window
17

18

19

20 ret ;return to GUI

21 end

Since macros are simply a series of FELIX commands, you must tell the pro-
gram when to return control from the macro interpreter to the command inter-
preter. To do that, add an ret statement before the last end statement.

This ensures that the interface returns to the appropriate graphical state upon
completion of the macro.

Executing macros

Once you have created a macro, the standard way to execute it is to issue the
execute macro command (ex) followed by the name of the macro. For example,
the command sequence shown below executes a macro named testl.mac.
FELIX searches for the macro in the current working directory and then in the
directory defined by the symbol macpfx, followed by the directories defined
by the symbols macpfl, macpf2, macpfs, ..., macpf9.

ex testl.mac
or.
ex testl

This command may be issued interactively in the command window, or, alter-
natively, may be part of an existing macro. The following macro illustrates how
a logic operation can determine subsequent macro tasks.

1 c**color.mac

2 if &color egs red then
3 ex red_draw.mac

4 els

5 ex blue_ draw.mac

6 eif

8 end

Another way to execute a macro from the command window is to input the
name of the file preceded by a period. This is a quick shorthand notation that
can replace the above example. For example:

> .testl

executes the macro named testl.mac.

Passing arguments to macros

The mechanics of this feature are based on local symbols. Everything follow-
ing the macro name on the command line is made available to the called macro
in the form of local symbols.

When the called macro begins executing, one or more new local symbols are
defined. This applies when the macro is executed by ex, cal, or exr. These sym-
bols always have the names: _args, _argl, arg?, etc. The first of these, _args,
is the number of arguments passed to this macro. When no arguments are
given, _args is zero. Otherwise, there are additional symbols _argl, arg2, etc.,
each of which is the value of the n'" argument passed to this macro.

Caution: Do not use an argument number greater than the
number of arguments actually passed to the macro.

For example, the command line:
> ex test 13 4

causes the macro named test.mac to begin executing, with the following local

symbols:
_args = 2
_argl = 13
_arg2 = 4

The command line:
> exr find ’'Look for’ h* n*

causes the find.mac macro to begin executing, with the following local sym-
bols:

3

_args
_argl = Look for
_arg2 = hx*

_arg3 = n*

Loops

FELIX macros allow loop structures that are very similar to the loops in the
BASIC and FORTRAN programming languages. Loops allow a set of opera-
tions to be carried out iteratively. Loops are necessary for processing multidi-

mensional data for which each vector along a dimension is processed in
exactly the same way. Rather than typing in the same sequence of commands
several thousand times, you can type in the processing sequence only once and
use a loop to apply the specified sequence any number of times.

The basic layout of the loop structure is shown below:
1 for symbol start value end value increment
2
3
4 next

The argument symbo1 is the name of the loop counter whose value is incre-
mented to reflect the current integer status of the for loop.

The argument start value defines the initial value of the loop counter, and

the argument end value defines the last value for the loop counter. Both these
arguments are inclusive with respect to their values, may be positive or nega-
tive, and may be a real number or an integer. If either of these values is a real

number, the actual value used is the closest integer value.

The argument increment is the loop counter increment. This defaults to 1 if
omitted, but may be set to any non-zero integer. All arguments for the loop
sequence may be in the form of symbols.

Macro loops are related to symbol substitution, in that each loop maintains a
counter symbol that is incremented each time through the loop. A simple
example of a macro containing a loop is:

1 c**testl.mac

2 for count 1 5

3 ty count = &count
4 next

5 ex &return

6 end

The loop structure is defined by the for and next commands. Commands
enclosed between the for and next are executed while incrementing the value
of the specified counter symbol for each loop (the symbol count is incremented
from 1 to 5 in steps of one). In this macro, the only command inside this loop
is the type command (ty), which prints text defined by its command line. The
output of the above macro loop is:

count=1
count=2
count=3
count=4
count=5

The output created by this macro illustrates the operation of for loops. Each
time through the loop, the for counter (count in this example) is set to a value
corresponding to the number of times the loop has repeated. Symbol substitu-

tion replaces the &count parameter with the value of the for loop counter, and
the ty command explicitly types out the text following the ty command.

For loops may be nested up to 16 levels deep; however, each loop must have a
unigue counter symbol. An example of a nested for loop is:

1 c**test2.mac

2 for row 1 3

3 for col 1 4

4 ty row=&row col=&col
5 next

6 next

7 ex &return

8 end

The inner loop (which affects the symbol col) increments through all its values,
the outer loop (row) increments one, and then the inner loop increments
through all its values again. Thus the ty command is executed 12 times, for all
the combinations of the row symbol from 1 to 3 and the col symbol from 1 to
4. Nested loops are useful for processing multidimensional spectra.

Interrupting a macro

You may want to interrupt macro execution prior to completion. Getting stuck
in a lengthy loop is not uncommon when writing new macros for novel data
processing. To stop a running macro, type <Ctrl>+\ (press the <Ctrl> and
backslash keys simultaneously) or <Ctrl>+c.

For more elaborate handling of interrupt signals, you may use the esc com-
mand to escape from a loop. To do this, you must include a specific command
structure in your macro that uses the escape command (esc), with the format:

esc symbol_name

Each time the esc command is encountered, the program updates the argu-
ment symbol name. If the <Esc> key is not in the keystroke queue (i.e., you
don’t press <Esc>), the value for symbol name is set to 0. If the <Esc> key
appears in the keystroke queue (meaning you did press <Esc> on your key-
board), the value for <symbol name> is set to 1. As shown in the following
example, you can then include logical branching in your loop to specify how
the macro is halted:

1 c**escape.mac

2 for loop 1 9999

3 ty &loop

4 esc out

5 if &out ne 0 quit

6 next

7 quit:

8 end

Loop application: Reversing a matrix

The following is a simple macro used for reversing each 1D vector in a matrix.
This example illustrates many of the features described above. It uses the
reserved symbol d2size to ensure that each vector along the second dimension
is acted upon accordingly:

1 c**reversed2.mac

2

3 loa 0 &row

4 rev

10 quit:

11

for row 1 &d2size ;for each row in the matrix
;load the row

;reverse the data points

sto 0 &row ;store the row back

ty Row= &row $;type the row number,no scrolling

esc out ;check for escape key

if &out ne 0 quit ;quit if escape hit

next ;loop to next row

end

Loop application: Accessing the database

The following is a macro for deleting cross-peak footprints along the first
dimension for a defined region. A macro such as this might be used to remove
cross-peak footprints that are part of a T1 streak, which may be defined by the
user symbols d1low and dlhigh:

1 c**tlstreak.mac

2

dba list zero 1 xpk:peaks ;zero list 1

get 'Dl low point: ’ dllow ;get low limit
get ‘Dl high point: ’ dlhigh ;get high limi
dba list range 1 xpk:peaks cenl &dllow &dlhigh

for loop 1 &pknum ;for each peak number

dba list load 1 &loop peak

;load the first peak number

8

drx xpk:peaks.&peak 0 ;undraw the footprint

9 dba item delete xpk:peaks.&peak
;delete that footprint

10 ty Deleting peak number: &peak ;talk
about it

11 esc out ;check for escape

12 if &out ne 0 quit ;quit if escape

13 next

14 quit:

15 ret

16 end

Branching statements

go statements

Macros allow unconditional branching using variations of the
FORTRAN goto or the switch statement in C. The structure of this command
is:

go label

where the argument label is a specific label identified in the macro.

Labels are identified by adding a colon () to the end of the label name. For
example, the statement:

go quit
looks for the label shown below:
quit:

The go command is very useful when working within interactive macros that
prompt you for replies or that need to make decisions based on the values of
symbols that are set with toggles or switches.

Below is an example of a simple menu that uses a go statement in this way. The
only argument of the go command is a label name, which may be explicit or
symbolic; for example:

1 c**gomacro.mac
2

3

4 go quit

7 quit:

8 ty All done!
9 end

When the go command is executed, the macro jumps to the specified label (in
this case, quit:) and continues executing.

Labels may be up to sixteen characters long and represent a specific place within a
macro file. Within any macro, each label name must be unique. When alabel is
branched to, the commands that follow it are executed. In the example shown above,
after the go branch to the quit: label, the message a11 done is printed to the screen.
If the specified label is not found within the macro, the macro continues on to the next
line asif no go statement existed.

gto statements

Macros also allow branching using a case-type go to command (gto). This com-
mand determines branching based on a fixed integer, which is usually a num-
ber defined by a symbol. The format of this gto command is:

gto symbol value value(O valuel value2 valueN

If the argument symbol_value equals 0, the macro branches to the label defined
by value0. Likewise, if the argument symbol_values equals 2, the macro
branches to the label defined by value2.

In the FELIX 2002 GUI, the gto branching statement is used to make decisions
based on symbol values defined by control panel toggles or switches. For
example, a symbol defined by a toggle can be used to choose between Fourier
transform options. For this example, if the particular symbol called fttype
(defined by a specific toggle) has a value of 0, a FFT is specified. If the symbol
fttype has a value of 1, a BFT is needed. We could then create the following
macro to make use of this information:

1 c**toggle.mac

2 mnu p transform 20 4
3 if &button eq 0 quit
4 gto &fttype fft bft
5 fft:

6 ft

7 dr

8 go quit

9 bft:

10 bft

11 dr

12 go quit

13 quit:

14 ret

15 end

gif statements

Macros also allow branching using the arithmetic if command (gif). This com-
mand determines branching based on the sign of a fixed integer, which is usu-
ally defined by a symbol. The format of the gif command is:

gif symbol value value 1t 0 value eq 0 value gt 0

In practice, if the argument symbol valueis less than 0, the macro branches to
the label defined by value 1t o. If the argument symbol value equals zero
0, the macro branches to the label defined by vaiue eg 0. And if the argument
symbol value iS greater than 0, the macro branches to the label defined by
value gt 0. The gif statement is commonly used in GUI macros.

if statements

Macros can contain if statements for conditional branching. if statements are
similar to go statements in that they can result in a branch to a specified macro
label, but differ in that the branching may or may not happen, based on the
specified condition. The first type of if statement consists of a conditional and
a target label:

if conditional label

Another type of if statement, the if/then/else, is used to control the execution of
blocks of code depending on the state of the conditional. The form of the if/
then/else is:

if conditional then

else

eif

The most basic conditional consists of two strings and a relational operator
and has a value of either true or false. The conditional is evaluated by compar-
ing stringl with string2 using the specified relational operator. A typical if
statement is:

if &number eq 0 quit

This command compares the value of the symbol number to 0 using the eq
(equal to) relational operator. If the symbol number equals 0, the value of the
conditional is true, and a branch is made to the label quit:. If the symbol num-
ber does not equal 0, the conditional is false, no branch is taken, and the next
command in the macro is executed.

Conditionals use two different types of relational operators. Arithmetic rela-
tionals interpret the strings as numbers, and string relationals interpret the

strings as ASCII characters. Because numbers and ASCII strings do not sort in
the same order, you must be aware of the ASCII code when using string rela-

tionals other than egs and nes. A list of the relationals is shown below for both
arithmetic and string characters:

Arithmetic relationals:

eq -- equal to

ne -- not equal to

It -- less than

gt -- greater than

le -- less than or equal to

ge -- greater than or equal to
String relationals:

eqgs -- equals

nes -- not equals

Its -- less than

gts -- greater than

les -- less than or equal to

ges -- greater than or equal to

Conditionals can be combined using and and or operators to test more than
one relation at a time. The and operator yields a true result only when it oper-
ates on two true conditions. The or operator yields a true result if either condi-
tional is true. Examples of conditionals containing the and and or operators
are:

stringl operator string2 and string3 operator string4
stringl operator string2 or string3 operator string4

An example macro that uses if commands is given below. This macro plays a
guessing game using a binary search and uses a variety of flow-control com-
mands that are discussed above.

1 c**test4.mac

2 ty Guess a number between 1 and 10=
3 ready:

4 get "Are you ready? (y/n):" yesno

5 if &yesno nes y ready

;ask again if not ready

6 def lo 1 ;define the necessary symbols
7 def hi 10

8 def old 0

9 again:

10 eva middle ((&hi+&lo-1)/2) 1

;guess middle of range

11 if &hi eq &lo done ;jwe are done

12 if &middle ne &old guess

13 if &middle eq &hi mlo

14 def middle &hi

15 go guess

16 mlo:

17 def middle &lo

18 guess:

19 get "Is it bigger than &middle?" yesno
20 def old &middle

21 if &yesno nes y no

22 eva lo (&middle+1)

23 go again

24 no:

25 def hi &middle

26 go again

27 done:

28 ty The number is &middle.
29 ret

30 end

This macro uses if commands containing both numeric and string relational
operators. The string relational nes is used to distinguish between the user
responses, while the numeric relations eq and ne are used to compare num-
bers. The eva (evaluate) command is used twice to force evaluation of expres-
sions.

Another macro example using if statements follows. In this example, the gv
command gets the value of a datapoint from the workspace and places itin a
specified symbol, to find the largest, smallest, and average value in the work-
space:

1 c**test6.mac

2 gv 1 bigpt

3 def smlpt &bigpt

4 def tot 0

5 for point 1 &datsiz

6 gv &point thispt

7 if &thispt gt &bigpt newbig
8 if &thispt 1t &smlpt newsml

9 go loop

10 newbig:

11 def bigpt &thispt
12 go loop

13 newsml:

14 def smlpt &thispt
15 loop:

16 eva tot (&tot+&thispt)
17 nex

18 eva avg (&tot/&datsiz)
19 ty Biggest=&bigpt

20 ty Smallest=&smlpt

21 ty Average=&avg

22 ret

23 end

This example first sets the symbols bigpt and smlpt to the value of the first
datapoint and the symbol tot to zero. The macro then loops through all
datapoints (from 1 to &datsiz), comparing values with bigpt and smipt. If any
point is larger than bigpt or smaller than smlpt, the new large or small point
is saved. The sum of all point values is accumulated in tot, which is used to cal-
culate the average.

if/then/else statements

Macros can also contain if/then/else structures for more orderly flow control.
The if/then/else statements may be nested up to 16 deep. The basic if/then/
else/eif structure is:

if conditional then
els

eif

The condition is evaluated by comparing stringl and string2 using the speci-
fied relational operators described above. A typical if/then/else/eif statement
is:

if &number eq 0 then

type Symbol not defined
els

eva count (&value/&number)

ty Symbol count is: &count
eif

In the example shown above, the if/then/else/eif structure is used to prevent
a divide by zero error if the value of the symbol number is 0.

ifx statements

Macros can contain ifx statements for conditional macro execution. ifx state-
ments are similar to if statements in the arguments required; however, they
differ in that they result in the execution of another macro instead of branching
to a label in the same macro. The basic ifx command consists of a conditional
and a macro filename:

ifx conditional macro name

The conditional is evaluated in the same way as in the if statement. A typical
ifx statement is:

ifx &number eqg 0 root

This command line compares the value of the symbol number to 0 using the
eq relational operator. If the symbol number equals 0, the macro named
root.mac is executed.

exr statements

The exr command (execute and return) is a powerful way to execute macros.
This command brings the concept of a subroutine call, as used in high-level
programming languages, into the FELIX command arsenal.

The exr command preserves where you are in the current macro, loads and
runs the new macro, and resumes exactly where it left off when the new macro
finishes. Macros executed via exr may be nested up to eight levels deep.

Macro-specific commands

Several commands are used only within macros. For example, the esc com-
mand described above is useful only in a macro. There is no reason to check
for an <Esc> key unless a macro is running, since otherwise there is no process
to interrupt. Some other examples are shown below.

com statements

Communicate statements (com) pause an executing macro, prompt the user
for a single command line, execute that one command, and then restart the
macro after the pause point. For example, the com command can be used to
test a range of window functions as they affect a dataset:

1 c**readld.mac

2 rn test.dat

3 com
4 bft
5 dr

6 end

In the above example, at the com command (line 3), a FELIX prompt appears
and waits for the user to enter any FELIX command they desire.

err statements

Error statements (err) define an error trap destination for a macro. If any com-
mand sets the value of the reserved symbol status to non-zero, it means that
command didn’t function properly. If you use an err statement, the macro
resets the status to 0 and continues executing where the error trap indicates.
There are currently two types of err commands. If the command:

err label label

is encountered, the macro branches to the specified label. If the command
string:

err macro macro

is encountered, macro interpretation is transferred to the specified macro.
Error traps are most commonly used in macros that read user data.

ty and tym statements

The ty statement types the following text to the output window; the tym state-
ment types the following text to the status bar. This text can be used for detail-
ing the status of any macro.

For example:
tym All done!!

ty Data size is: &datsiz

Note: Symbols may be substituted in any macro command.

Using FELIX to build macros

Macros may also be created from within FELIX 2002 using simple program
commands. This technique is useful for saving a sequence of commands for
execution later. For example, spectrum annotations are saved to a macro file.
When you want to redisplay the annotations, simply execute that annotation
macro.

Before building a macro using FELIX commands, check for the presence of a
macro file with the name you want to use. Do this in your macro with the
inquire (inq) command, which accepts the input string:

ing prefix file name symbol

The prefix argument reflects the filetype based on the prefix, whether it is a
macro (mac), annotation file (.ann), datafile (.dat), or matrix (.mat) file.

For files without prefixes, set the prefix parameter to nul. Based on the prefix
type, FELIX uses the directory defined by the *pfx symbol to locate the file. For
example, if prefix is mac, FELIX looks in the directory defined by the symbol
macpfx to determine whether a file named filename exists. If the file is found,
the symbol defined by the argument symbol is given a value of 1. If the file is
not found, the symbol defined by the argument symbol is given a value of 0.
Below is an example that uses the inqg command to determine whether a file
named test exists in the macro directory:

1 c**inquire.mac

2 def filnam test

3 ing mac &filnam exist

4 if &exist eq 1 fileok

5 ty ----------

6 ty File &filnam not found.
7 go quit

8 fileok:

9 ty ----------

10 ty File &filnam exists.
11 quit:

12 ret

13 end

Before building a macro using FELIX commands, you must first open that file.
The open file command (opn) performs this function and accepts three argu-
ments:

opn prefix file name overwrite/append

The prefix parameter defines the prefix for the new file and places that file
in the directory defined by the corresponding pfx symbol. As discussed above,
if prefixis mac, the resulting macro file is created in the directory defined by
the symbol macpfx.

The £file name argument is the name of the file to be created. The overwrite/
append argument defines whether you want to overwrite an existing file (0) or
append to an existing macro file (1). Setting overwrite/append to 1 is useful

for modifying macros that already exist, without recreating them from scratch.

Two files can be opened simultaneously, providing one file is opened for out-
put only.

Once a macro file has been opened for writing, the put command (put) is used
to add text to the file. The put command adds all text following it to the file,
including spaces. Quotes are not needed. Sample put statements are:

putdef annsize &annsiz
putdef thick &thick
putdef level 1.0

Open macro files must be explicitly closed before execution, using the close file
command (cls), which requires no arguments.

Since you are creating a macro, it is very important that before closing it,
appropriate end and return statements are added to the file. The end com-
mand must be the last line in a macro in order for the program to switch from
the macro interpreter to the command interpreter. Similarly, the ret statement
must be at the end of a macro if you want it to return to the GUI. An example
of building a macro is shown below:

1 c**build.mac

2 def return root

3 opn mac cplevel 0

4 putc**cplevel .mac

5 putdef level &mylevl
6 putdef nlevel &mynlev
7 putdef pencol &mycolr
8 putdef cycle &mycycl
9 putex &return

10 putend

11 cls

12 end

The resulting macro, named cplevel.mac, is created in the directory defined by
the symbol macpfx:

1 c**cplevel.mac

2 def level 1.2
3 def nlevel 10
4 def pencol 2
5 def cycle 3

6 ex root

7 end

This macro can now be executed.

When building macros in this way, you may want to place a symbol-definition
statement point to another symbol instead of a value. In the example above, if
you changed line 8 in the build.mac file to read putdef cycle !&newcyc, line 5

in the cplevel macro would read def cycle &newcyc. Delayed symbol substi-
tution such as this greatly increases the power of the program.

Some simple macro applications

Reading files

FELIX macros are the most powerful and innovative feature of this NMR pro-
cessing software. By writing your own macros, you can automate anything
that you can do with FELIX manually.

Your ability to transform and manipulate data automatically using macros is
limited only by your imagination. For example, if you want to read a datafile
(rn), apply an exponential window function (em), Fourier transform (ft), phase
correct (ph), and draw a spectrum (dr), you could write the following macro
and name it
process.mac:

1 c**process.mac

2 get ’'Enter file name:’ filnam
3 rn &filnam

4 em 3

5 ft

6 ph

7 dr

8 cl

9 ret

10 end

The get command prompts you with "Enter file name:" and waits for a
datafile name to be input. The read command (rn) reads the file (notice the use
of the symbol filnam). Then the data are multiplied by a 3 Hz exponential win-
dow (em 3). The data in the workspace is then Fourier transformed (ft), phase
corrected (ph), and displayed on the current graphics terminal with the draw
command (dr). The ex &return statement returns the macro to the GUI. The
end command (end) is mandatory at the end of every macro; this tells FELIX
to stop executing commands from the macro and accept input from you again.
Instead of manually entering the six commands listed above, you can simply
enter:

> .process
or:
> ex process

from the command line.

Plotting multiple files

Macros can be used to perform repetitive tasks by constructing loops that pro-
cess several datafiles in a similar manner. For example, if you want to generate
hardcopy plots for a series of related 1D spectra, you might construct a macro
similar to the macro mplot.mac:

1 c**mplot.mac

2 again:

3 get ’'Enter file name (quit):’ filnam
4 if &filnam egs quit then

5 ty Returning to &return
6 ex &return

7 else

8 rn &filnam

9 em 3

10 ft

11 ph

12 dr

13 hep

14 eif

15 go again

As in the previous macro, you are first prompted for a filename, then the data
are multiplied by an exponential, Fourier transformed, phased, and drawn.
The spectrum on the screen is then plotted on the current hardcopy device
with the hardcopy plot command (hcp). After the first spectrum is plotted, the
mplot.mac macro branches back to the label again: and prompts for a second
datafile, which is then processed and plotted. In this macro, to quit you enter
quit instead of an actual filename.

¢5 5 Menus and Control Panels

The FELIX 2002 graphical user interface (GUI) contains a variety of
interactive menu bars, pulldowns, and control panels that simplify
data analysis and processing. Because the GUI consists of a set of
FELIX macros that use specific commands to build and display
graphical menus, you can easily modify it. To customize the GUI to
meet the needs of your laboratory, edit the macros provided, or
write your own.

The menu commands

Menu items

Control panels

Before developing your own menus, you first need to become famil-
iar with the commands for menu interaction. The FELI1X 2002 menu
components can be divided into two separate categories: menu
items and control panels. Menu components are described in detail
in this section.

FELIX 2002 menus contain items that, when selected, execute com-
mands in macros. Menu-type items can be displayed as horizontal
menu bars, vertical pulldowns, or icons. Menu items are selected by
moving the cursor onto the desired item and clicking the primary
mouse button.

The second category of menu components includes control panels;
i.e., dialog boxes. Control panels are separate windows that can be
placed anywhere on the screen.

FELIX Command Language Reference/ March 2002 51

Menus and Control Panels

Changing the menubar interface

When FELIX 2002 starts, it looks for a file called root.mot to display
items on the menu bar and pulldowns. The .mot file(s) must be
present in one of the current menu directories (defined by the sym-
bol motpfx). The syntax for a.mot file is:

mode item name mnemonic accelerator accelerator text
call back call back data filename

Modes
mode can have different values depending on the type of menu being
defined. A list of modes follows.

menubar
The menubar mode is for the items displayed on the menu bar itself.
Here is an example of the use of the menubar mode:

menubar File F NULL NULL NULL NULL file.mot

where File is the name of the item that appears on the menu bar; F is
the hot key that is used for the command (which is underlined on
the menu bar); and file.mot is the name of the file that contains the
items listed under the File pulldown.

popup

The popup mode is used when an item in the menu bar has a cas-
cading menu attached to it. The following is an example for the use
of this mode:

popup "Plottype" t NULL NULL "view Plottype" NULL
plottype.mot

where "Plottype" is the text that appears on the pulldown or cascad-
ing menu; tis the hot key; "view Plottype" is text that is given for this
menu and is just for your reference (it is not used); and plottype.mot
is the name of the file that contains the items to appear on the cas-
cading menu.

52 FELIX Command Language Reference/ March 2002

separator

toggle

item

Changing the menubar interface

The separator mode draws a line to separate groups of related com-
mands commands in a pulldown or cascading menu; for example:

separator separator NULL NULL NULL NULL NULL NULL

where separator is the text for the separator name. This can be any
text you desire.

The toggle mode places a toggle into a pulldown or cascading
menu; for example:

toggle "Draw Peaks" D Ctrl<Key>k Ctrl+k "ex draw-
peaks" NULL pksdrw

where "Draw Peaks" is the label for the toggle that appears on the
menu; D is the hot key; Ctrl<Key>Kk is the accelerator that is bound to
this menu item; Ctrl+k is the text that appears next to the text for the
menu item; “ex drawpeaks" is the call-back macro that is called when
this menu item is selected or when its accelerator or hot key is
pressed; and pksdrw is the name of the symbol that is updated when
the state of the toggle is changed.

The item mode is used when you want to execute the call-back with-
out any cascading menus. It has the following general format:

item LABEL HOTKEY ACCELKEY CALLBACK CBCONTROL NULL DEPEND

where LABEL is the text that appears on the menu; HOTKEY is the
hot key for this menu item; ACCELKEY is the accelerator; CALL-
BACK is the command that is called when this menu item is selected.
CBCONTROL is a flag that controls how many times the callback is
excuted if it is a table menu, and DEPEND is a symbol that controls
whether this item is to be displayed (when DEPEND is not 0) or to
be invisible (when DEPEND is 0).

The following is an example:

item "Plot" P Ctrl<Key>p Ctrl+p "ex plot" CBcontrol NULL status

FELIX Command Language Reference/ March 2002 53

Menus and Control Panels

keypad

The keypad mode is used to define actions that are performed when
you press the keypad keys; for example:

keypad NULL NULL NULL NULL "exm keypad" NULL NULL
where "exm keypad" is the command that is called when you press
the keypad buttons.
mouser

The mouser mode is used to define the popup menu (called context
or shortcut menu) that appears when the right mouse button is
pressed; for example:

mouser NULL NULL NULL NULL NULL NULL mouser.mot

where mouser.mot defines the menu items that comprise the right-
mouse menu.

mousem

The mousem mode is used to define the action performed when you
press the middle mouse button; for example:

mousem NULL NULL NULL NULL "exm cursorval 4" NULL
NULL

where "exm cursorval 4" is the call-back that is called when you press
the middle mouse button when the cursor is inside a frame.

Changing the iconbar interface

The file used to display icons on the icon bar is icons.mot. The icon
file(s) must be present in one of the current menu directories
(defined by the symbols icopfx). The following is the syntax for the
icons.mot file:

mode filename call back ballon help text paraml
param2 param3 paramé

where mode can be one of the following.

54 FELIX Command Language Reference/ March 2002

Changing the menubar interface

The icon mode is used to display the icons in the icon bar. ;. It has
the following general format:

icon ICONFILE CALLBACK TOOLTIP NULL TOOLTEXT CBCONTROL NULL DEPEND

icon
icon zoom.icon
CBcontrol NULL
separator
option

where ICONFILE is the icon file that contains the 16 x 15 pixel 16-
color bitmap graphic for the icon; CALLBACK is the command that
gets called when you select this icon; TOOLTEXT TOOLTEXT is the
explanation of the command than appears on the status bar when
the cursor is placed above the icon; CBCONTROL is a flag that con-
trols how many times the command is excuted if it is a table menu,
DEPEND is a symbol that controls whether this item is to be dis-
played (when DEPEND is not 0) or to be invisible (when DEPEND
is 0).

The following is an example:

"ex limits 1" "Zoom" NULL "Zoom in onto a defined area"
status.

The separator mode is used to separate the icons; for example:
separator separator NULL NULL NULL NULL NULL NULL

Parameters 1-4 are currently not in use.

The option mode is used to place a combo box on the icon bar; for
example:

option plottyp.mnu "ex plottype 0" "plottype" plot-
typ NULL NULL NULL

where plottype.mnu is the menu file that contains the text to display
on the popup menu; "ex plottype 0" is the call-back that is called
when this popup is activated; "plottype" is reserved for balloon help
but is not currently displayed; plottyp is the symbol that is changed
when you select a different item on the popup.

FELIX Command Language Reference/ March 2002 55

Menus and Control Panels

Control panels (dialog boxes)

There are many applications in NMR processing where you need to
enter information, such as filenames and various processing param-
eters. For defining this information from within the FELIX 2002 GUI
environment, you can create customized control panels (dialog
boxes) from ASCII text files.

Control panels are separate windows. They can be placed anywhere
on the screen. When opened, a control panel appears at the same
coordinates where the previous control panel was placed.

Types of control panel commands

Within the file that defines a control panel are two types of com-
mands:

4 Output commands. These are commands that provide the
graphical information needed to design the control panel. They
define the size of the control panel, the text for the control panel
header (*h), the text for user prompting (*c), and coordinates for
displaying highlighted boxes (*x). These commands are for out-
put only. For more specific information, see below.

4 Input commands. These are commands for setting symbol val-
ues based on input from the user. These commands create edit
(entry) boxes (“fields") (*f), toggles (*t), switches (*s), list boxes
(*1), buttons (*b), combo boxes (*p), file-select tools (*0), list boxes
(*v) with multiple items on a line (so-called variable lists), and
slider-combos (*a). For more specific information, see below.

Working with control panel commands

There are two different control panels, modal and modeless. A modal
control panel freezes the FELIX main window until you close the
control panel. A modeless control panel, however, allows you to
access the main window without closing the contro panel.

56 FELIX Command Language Reference/ March 2002

Control panels (dialog boxes)

Modal control panels

To open a modal control panel, issue the following command state-
ment with appropriate arguments:

mnu p menu x origin y origin

mnu p keywords in the statement tells FELIX to read a menu file con-
taining a control-panel definition. The menu argument is the name
of a menu file that must be present in one of the current menu direc-
tories (defined by mnupfx, mnupfl, and other symbols). By conven-
tion, menu files use the .mnu extension.

In previous versions of FELIX, x_origin and y_origin was used to
define the position of the upper left corner of the box in character
units. In FELIX 2002, this is ignored.

For example, the command line:
mnu p xopen 20 4

opens a control panel defined by a menu file xopen.mnu. See the fol-
lowing section for details about menu files.

A modal control panel is closed when you click one of its buttons, or
the close button [x] on the upper-right corner of the panel.

Modeless control panels

To open a modeless control panel, issue the following command
statement with appropriate arguments:

mnu a menu x origin y origin

A menu file that defines a modeless control panel has almost identi-
cal formats as used in a modal control panel, except for the follow-
ing requirements:

¢ You must ‘hold’ the macro execution flow explicitly if you dis-
play a modeless control panel and do not want the macro execu-
tion to continue until the modeless control panel has been closed.

An example is during 2D processing, when D1 has been Fourier
tranformed and you choose to phase D1 interactively. The control
panel for phasing is modeless; by default the macro would go on
for D2 processing without waiting for you to finish the D1 phas-

FELIX Command Language Reference/ March 2002 57

Menus and Control Panels

ing. To hold the macro execution flow, you can add the following
command in the macro next to the “mnu a” command:

wai -1 menu

This will force FELIX to hold the macro execution until the con-
trol panel defined by menu file has been closed.

You normally want to define callback macros to the input con-
trols, which trigger some actions when you interact with the con-
trols in the control panel. See the Callback macros section below.

You must close the modeless control panel explicitly. Unlike a
modal control panel, clicking the buttons in a modeless control
panel does not automatically close the panel. You must associate
the buttons with a macro that closes the panel with the following
command:

mnu remove menu

The macro file ezldtransform.mac is a good example that allows you
to display a modeless control panel for real-time phasing. The corre-
sponding menu file is rtphase.mnu. Most of the input controls trigger
a callback macro rtphase.mac. To find those files, see the following
section Find your way through the menu interface.

Control panel files (menu files)

A menu file defines the components in a control panel and their lay-
out and actions to trigger. A full list of the file xopen.mnu, and the
control panel it creates, is shown below.

c**xopen.mnu
23 40
*h 1 1 14 ‘OPEN FILE’

*0 2 2 40 5 5 &mytype&ftype &newpfx&ftype new-

fil(de:ftype.ge.0)

*c 3 19 5 ‘File Type’

p 12 19 16 7 ‘Matrix (.mat)’ ‘Felix Data (*.dat)’
‘DBA (*.dba)’ ‘Insight II Molecule (.car)’ ‘PDB Mole-
cule (.pdb)’ ‘Other Data (Bruker, Varian, JEOL, FFW)
(*)’ ‘Macro (*.mac)’ ftype

58 FELIX Command Language Reference/ March 2002

Control panels (dialog boxes)

*c 3 20 5 ‘Dimension’ (de:ftype.eq.1l)

*p 12 20 8 2 ‘1D’ ‘ND’ datdim (de:ftype.eq.l)

*c 20 20 5 ‘Access’ (de:ftype.eq.0)

*c 20 21 5 ‘Storage’ (de:ftype.eq.o0)

*p 27 20 10 2 ‘Read Only’ ‘Write’ macces
(de:ftype.eq.0)

*p 27 21 10 2 ‘Disk’ ‘Memory’ matmem (de:ftype.eq.0)
*x 2 22 40 5

This file creates the following control panel:

FELIX Command Language Reference/ March 2002 59

Menus and Control Panels

X
Loak it Ia Fractice j
File Mame | Size| Last Modifiec &
.. 1] 8/02/01 [4:36
314 1] B/20/01 [1:12—
[1d_adv 1] B/20/01 [1:12
I e 1] B/20/01 [1:12
i e 1] B/20/01 [1:12
[dba 1] B/20/01 [1:12
[relay 1] B/20/01 [3:01
[J) br_hrge.mat 16793600 1/26/00 [254
File name: |
File Type: IMatri:-: [*.mat] j
Other Ophions
Dimension Iﬂ Access Fead Only =
Storage Digk. [
Fead Symbols [~
] 4 Cancel

The first line that starts with “c**” defines the name of the file and is
optional. The second line defines the dimension of the control panel
butitisignored by FELIX 2002. Instead, the dimension of the control
panel is automatically optimized by FELIX.

Each of the remaining lines defines a control or a group of controls
in the control panel, and optionally the dependency, exit status, and

60 FELIX Command Language Reference/ March 2002

Control panels (dialog boxes)

callback macro associated with the control. The formats for such
commands are listed below.

Note: Text after “;” in a line is treated as comment and is
ignored by FELIX.

Output commands

Header text

Labels

Highlight boxes

These are commands that provide the graphical information needed
to design the control panel.

The *h command in the control-panel file specifies the header text.
The format of this command is:

*h x origin y origin number of characters ‘header
text’

The header text must be enclosed in single quotes. By default, the
header is left-justified within the control panel and thus the param-
eters x-origin and y-origin are ignored. Header text may contain char-
acters or use symbol substitution for customizing the header.

The *c command in a control-panel file is used to place text. Text in
control panels is most commonly used for labeling the required
input for entry boxes. (The command that defines an entry box is not
coupled to the text that labels it.) The format of a character string
command within a control-panel file is:

*Cc x origin y origin number of characters
descriptor text

Using the *c command, character strings can be placed throughout
the control panel. Character strings are limited to 64 characters and
must be enclosed in single quotes.

To enhance the appearance of control panels, you may uses high-
lighted rectangles. These rectangles are often used to group related

FELIX Command Language Reference/ March 2002 61

Menus and Control Panels

switches or entry boxes. Within a control panel definition, these rect-
angles are defined as:

*x x origin y origin width height text

The x_originand y_origin parameters define the bottom left corner of
the highlighted rectangle. The width and height parameters define
the rectangle size in character units. text is an optional string to be
placed on the left top line of the highlighted box.

Input commands

Edit boxes

List boxes

Input commands define information to be input to the program.
These commands include functions for entering and updating sym-
bol values, setting the value of the reserved symbol button, and
choosing between switches and toggles.

To generate an edit box for data input, the *f command is placed
within the control-panel file. This has the format:

*f x origin y origin length type symbol

Again, the x_origin and y_origin values are used to place the box
using character units. The length defines the length of the box in
character units. The type defines what the edit box expects. A ¢
means a character must be input into the edit box, an i means an
integer, and an r means a real number.

The symbol can be either a reserved symbol nhame or a user symbol
name. In either case, the current value of the symbol is displayed in
the box. If that symbol has not yet been defined, then a new user
symbol is created and is defined to have the value 0 or blank,
depending on whether the field is numeric or character.

Note: The box itself contains no prompting information.
Hints to the user must be indicated separately using *c
commands as discussed above.

A list box is an object that appears within control panels that lets the
user select and scroll through values from a displayed list.

62 FELIX Command Language Reference/ March 2002

Variable List Boxes

Control panels (dialog boxes)

To display a list box the *I command is placed within the control-
panel file. This command has the format:

*] x origin y origin width height list file select
symbol

The x_origin and y_origin values are used to define the lower left cor-
ner of the list box in character units. The width and height define the
width and height of the list box in character units. The list_file is the
name of the ASCII (text) file whose contents are to appear in the list
box. select is the name of the symbol that defines which line is
selected from the list. The value of select is 1 if the first line in the list
is selected, 2 if the second line is selected, and so on. The symbol is
the name of the symbol whose value is updated to reflect the
selected line.

For example, if the selected value was test.mac, symbol will be
test.mac after the "test.mac" line is selected from the list box. From list
boxes, you therefore have two means of getting output: select defines
the number of the line in the list box that was selected, and symbol
represents its actual alphanumeric value. When exiting from a list
box, either of these values can be used to make a later decision.

List boxes are especially useful for selecting files or matrices to be
read and displayed. The text file named by list_file may be of virtu-
ally any form or origin. In many places in the menu interface, FELIX
shows a list box of filenames. To do this, FELIX issues a command to
obtain a directory listing and store it in a file, then shows the con-
tents of that file in the list box. You could just as easily build a file
using the opn, put, and cls commands.

A variable list box is useful when you want to get only a certain
word from the selected line in a list box. To display a variable list box
the *v command is defined in the following format:

*v x origin y origin width height list file symboll
num_of word symbol2

All the parameters are the same as for a regular list box (see the pre-
vious section), except that a value num_of_word is added between
symboll and symbol2 to define which word from the select line is to
be received by symbol2. For example, if num_of _word is 2, the

FELIX Command Language Reference/ March 2002 63

Menus and Control Panels

selected line is “H104 N104”, then symbol?2 received a value of
“N104”.

Radio buttons (switches)

Toggles

Radio buttons (or switches) are used within control panels for set-
ting the values of symbols that integer numbers. By convention, a
radio-button option is selected when its circle is highlighted. The

command for building switches in control panels takes the format:

*s x origin 1 y origin 1 spacing # iteml ... itemN
symbol

The # parameter defines the number of radio buttons. The origins
define the coordinate positions of the radio buttons. symbol defines
the symbol for the switch value. If you select the first radio button,
the symbol is 0. Selecting the second radio button sets the symbol to
one, and so on. The spacing parameter sets the vertical distance
between the radio buttons. From an application point of view, sym-
bol values set with switches are used within macros for defining
branching points or parameter values. If that symbol has not yet
been defined, then a new user symbol is created and defined to have
a zero value. When the control panel is first drawn, the radio button
corresponding to the current value of the symbol is highlighted. Only
one radio button per switch can be highlighted. When another radio
button is selected, the previous one loses the highlight and the new
one becomes highlighted. The contents of item1 ... itemN are the text
prompts for the radio buttons.

Toggles operate much like switches, but they can be only on or off,
and take up less space within the control panel. The command for
making toggles in control panels takes the format:

*t x origin y origin length # text 1 text 2 symbol

The origins are used to place the toggle using character units. The
length is the width of the toggle in character units and is obsolete.
Since the actual toggle does not contain any text, text_1 and text_2
are obsolete and can be blank. The # defines the number of toggle
options, which is usually 2, since toggles can be only on or off. The
symbol is the reserved or user symbol used for storing the current
value of the toggle.

64 FELIX Command Language Reference/ March 2002

Buttons

Control panels (dialog boxes)

From an applications point of view, symbol values set with toggles
are used within macros for defining branch points. In addition, tog-
gles have applications for telling the user the current state of yes-or-
no symbols. For example, the value for the drwbox symbol is either
0 or 1, depending on whether you want a box around your spectrum
to be drawn.

When the control panel is first drawn, the toggle value correspond-
ing to the current value of symbol is displayed. As with entry boxes,
there is no text prompt outside the toggle. The *c command is often
used to put text near the toggle to supply appropriate information.

Buttons are similar to toggles and switches, in that they change
symbol values. Buttons differ, however, in that they all change the
reserved symbol called button and then exit a control panel. (A con-
trol panel that doesn’t contain a button cannot be exited!) Buttons
are usually used for branching within macro routines. The most
common use of buttons is the OK/Cancel choice presented on many
control panels.

The command for placing a button within a control panel is:
*b x origin y origin length text value

or
*bt x origin y origin length text value

The origins are used to place the button. The length defines the
length of the button. The height of the button is 1.3 times of a char-
acter heightif “*b” isissued, or 1.0 times of a character height if “*bt”
is issued. The text is the button text, and the value defines the value
of the button reserved symbol when that button is selected.

Buttons are usually used for branching within macro routines. The
most common use of buttons is the OK/Cancel choice presented on
many control panels. By convention, buttons that have text = CAN-
CEL always set the value argument to zero, and buttons with text =
OK always sey the value argument to one. When the value is set to
zero, FELIX automatically ignores the changes made to the values of
all symbols that are relevant to this control panel. In effect, when
Cancel button is pressed, no change is made to the contents in the
control panel.

FELIX Command Language Reference/ March 2002 65

Menus and Control Panels

Pulldowns (combo boxes)

Pulldowns (combo boxes) are very similar to list boxes, except that
only the current selection is displayed, not all valid choices at once.
Clicking a combo box with the cursor, opens a vertical list of all
choices.

The command syntax is:

*p x origin y origin length num options text 1 ... text N symbol
num lines to display

or, instead of listing all the options in the command, use a text file
containing all the options:

*pf x origin y origin length height filename symbol symbol line
num lines to display

File-open combo

x_origin and y_origin set the left position of this box. length sets the
width of the box. num_options is the total number of options. . height
is height of the list box when expanded. text_1 ... text_N are the
option lines, each enclosed by single quotation marks. Filename is
the name of the text file that contains the options. symbol is the sym-
bol that receives the sequential number of the selected option: 0 for
the first line, 1 for the second and so on. symbol_line is the symbol
that receives the character string of the selected option. num_lines_
to_display is an optional value that sets the number of the first
options to be displayed. By default all options are displayed. If
num_lines_to_display is smaller than num_options, only the the num_
lines_to_display options are displayed. Sometimes this is useful
when the number of options to display has to be determined in run-
time.

File-open combo is a special combination of combo box, listand edit
boxes that makes it easier for you to browse and select a folder and/
or afile.

Note: Only one file-open combo is allowed in a control panel.
Extra ones are ignored

The command syntax is:

*o x origin y origin width height # lines extension dir filename

66 FELIX Command Language Reference/ March 2002

Slider combo

Control panels (dialog boxes)

x_origin and y_origin set the position of this tool in the control panel.
The width and height set the width and height of the tool. #_lines is an
obsolete parameter and is ignored. The height determines the num-
ber of files to display inside the list box contained within the file-
open tool. extension sets the default type of files to be searched for in
the directory. dir is the directory to be searched, and filename is the
name of the file that is returned when you select a file from the list.

Note: In the previous versions of FELIX, file-open combo
included OK, Cancel and Filter buttons. FELIX 2002 in
contrast assumes that you will add them explicitly (using the
*h commands). This allows you more controls over the
layout of the control panel. However, if a file-open combo
exists without OK and Cancel buttons explicitly defined,
FELIX 2002 will automatically add them at the bottom of the
control panel.

A slider combo comes with a horizontal (or vertical) adjustable
"value bar" plus three edit boxes that displays the minimum, maxi-
mum and current values. A slider combo is usually used in a mod-
eless control panel for real-time display of a spectrum while
interactively adjusting the values of one or more symbols.

A slider combo is created using the following command:

*a x origin y origin length minimum maximum decimal orientation drag mode
symbol label edit width

x_origin and y_origin set the upper left position of the slider in char-
acter units, and length defines the length of the slider in character
units. minimum and maximum define the minimum and maximum
values of the slider. The absolute value of decimal tells FELIX how
many decimal places to display for the slider position. If decimal > 0,
anormal float number is displayed. If decimal <0, scientific notation
is used to display the number. orientation determines the orientation
of the slider. When the orientation value is 1, the slider is drawn hor-
izontally; otherwise it is drawn vertically. (For FELIX 2002 only hor-
izontal slider can be displayed). drag_maode tells the program when
to call the call back macro if provided (see following section for
details about callback macros): 0 means to call the callback macro
only when the mouse button is released, otherwise the callback
macro is called whenever the value of the slider changes. symbol is

FELIX Command Language Reference/ March 2002 67

Menus and Control Panels

the symbol that receives the slider value. The label is the text that
appears above the slider.

edit_width is an optional parameter that defines the width of the
three edit boxes in character units. The default value is six. You can
change the minimum, maximum or current value by directly typing
in the corresponding edit box followed by <Enter>, and the slider
shifts to reflect your changes.

Control-panel dependencies

All the components in a control panel can be deactivated (grayed
out) depending on a situation defined by you. For example, the
selectability of any entry box in a control panel can be made depen-
dent on the value of another symbol. By default, an entry box is
always selectable. However, you can define a dependency for the
box, so that it is selectable and editable only when some symbol
value meets a specific criterion. For example, the entry box for the
name of an annotation file can be made dependent on the symbol
that controls the drawing of annotations, so that the user can change
the annotation filename only when annotation-drawing is turned
on.

An example helps to illustrate the usage and syntax. The following
two lines come from the FELIX 2002 macro that specifies the 1D
PLOT GENERAL PARAMETERS control panel. They control auto-
matic drawing of annotations in the current plot:

*t 20 9 12 2 ‘No’ ‘Yes’ pltann
*f 20 10 12 ¢ annfil (de:pltann.eq.1l)

The first line defines a yes-or-no toggle to control the symbol pltann,
the reserved symbol for drawing annotations on plots. The second
line defines an entry box where the user can enter the name of the

annotation file into the symbol annfil. The last portion of the second
line contains the dependency formula, which states that this box is
selectable only when pltann is 1; that is, when the toggle is turned
on.

Another example from the same control-panel macro controls the
selectability of the entry box for the 1D peak entity:

*f 20 6 12 c picent (de:drwpks.gt.o0)

68 FELIX Command Language Reference/ March 2002

Immediate exits

Control panels (dialog boxes)

This dependency states that the 1D peak entity name is selectable
only when drwpks is greater than zero.

The formal syntax for specifying entry-box dependency requires the
following:

¢ The parentheses and the leading de: are required and define this
parameter to be a dependency descriptor.

¢ The rest of the descriptor must be of the form
symbol.relation.value. This specifies the name of one symbol, one
of the arithmetic relations (for example, eq, ne, It, gt, le, or ge),
and one numeric value.

¢ The entry box is selectable only when the stated relation is true.

¢ An entry box can have many dependency descriptors, which are
separated by Boolean (and/or) relationships, for example:

(de:usedef.eq.0.or.method.gt.1)

In addition to exiting a control panel via the Cancel or OK button,

you may also trigger an immediate exit from a control panel when a
pulldown is selected. This is useful for taking immediate action as

soon as a pulldown is selected, without having to wait until the user
clicks a button.

Another example from the same control-panel macro illustrates
immediate exits via a pulldown:

*p 20 3 12 6 ‘None’ ‘Points’ ‘Hertz’ ‘PPM’ ‘Sec-
onds’ ‘1l/cm’ axtype (ex:2)

This exit descriptor states that the control panel should immediately
exit with button set to 2 whenever the symbol axtype is changed by
this pulldown.

The formal syntax for immediate exit requires that the parentheses
and the leading ex: be present and define this parameter as an exit
descriptor. The rest of the descriptor must be of the form: value. This
specifies the numeric value to be given to the button symbol and
tells the macro that invoked the control panel the precise exit
method that was activated.

FELIX Command Language Reference/ March 2002 69

Menus and Control Panels

Callback macro

Sometimes you may want the change in a control to activate the exe-
cution of a certain macro immediately. This is especially useful
when you display a modeless control panel containing a slider con-
trol, and you want to redraw the spectrum whenever you move the
slider.

For example, the control panel for 1D real-time phasing has the fol-
lowing command that defines a slider for you to adjust the 0-order
phase parameter:

*a 1 2 40 rtpminO rtpmax0 &rtpdecO0 0 1 rtpO ‘0
Order’ “exm rtphase 1”

The last parameter “exm rtphase 1” forces the macro rtphase.mac to
be executed with a parameter “1” whenever the you move the slider.

Finding your way through menu interface files

As mentioned, the FELIX 2002 GUI is built from macros, with the
assistance of menus and control panels. Every facet of the function-
ing of this interface is explicitly contained in these ASCII text files.
This allows the GUI to be altered and bugs to be fixed, without the
need for a new version of FELIX.

However, this feature necessarily involves a huge number of files.
There are literally hundreds of macros, menus, and control-panel
files. This section is designed to help you find your way through this
maze of files.

FELIX 2002 has a reserved symbol that facilitates the generation of

diagnostic information about every macro, menu, and control panel
invoked while the program is being run. This reserved symbol (ver-
ify) has three acceptable values (0, 1, or 2), which specify the type of
information to be provided.

When verify is zero (the default value), no verification takes place
and FELIX runs normally. If you select the menu item Preference/
Macro Debug, and next check the option of Show macro names,
verify is set to 1. Then, every time a menu interface file (macro,
menu, or control panel) is invoked, the full filename is shown in the

70 FELIX Command Language Reference/ March 2002

Finding your way through menu interface files

output window. This shows you exactly what files are being
accessed for every operation that is selected from the interface.

If you select the menu item Preference/Macro Debug, and next
check the option of Show all details, this sets verify to 2. FELIX
gives even more diagnostic information. In addition to the filename,
each FCL command is printed in the output window as it is about to
be executed. This allows advanced users to see the complete literal
text of each command that FELIX performs and is useful for debug-
ging new macros or altered menu-interface macros. In fact, if you
choose the "parent text" frame configuration and redirect FELIX out-
put to a file, you can capture the actual stream of FELIX commands
that are executed to a file, and then use that file to construct a new
macro. However, be aware that this activity can slow down com-
mand execution, especially if a macro containing long command
lines is used.

FELIX Command Language Reference/ March 2002 71

Menus and Control Panels

72 FELIX Command Language Reference/ March 2002

(

6 The Database and Tables

The database (DBA) facility in FELIX 2002 is an information storage
and retrieval subsystem used for organization of and access to infor-
mation related to spectrum data. For 1D applications, the database
might contain information pertaining to baseline points, integral
segment definitions, integral volume measurements, resonance
positions, and line widths. For 2D applications, the database might
contain information related to cross-peak positions, cross-peak
widths, volumes, resonance assignments, and tile limits. The data-
base is flexible enough that it can be used with any type of informa-
tion, whether or not it relates to NMR data.

All data are contained in a single binary file called a database file.
Since this file is binary, you cannot examine it directly. There are,
several tools available for accessing the database information from
within FELIX and for generating useful ASCII output. Database-
access commands also allow writing of any entity in the database to
an ASCII file and reading of the ASCII files back into the binary
database.

Structure of the database

Each set of information is stored in the database as an individual
entity. An entity can be thought of as a folder or container that holds
zero or more units of a particular type of data. An item is one unit of
data within an entity. All items in an entity have a single format that
is defined in an auxiliary file called a schema. For example, the set of
information that corresponds to one particular cross peak is stored
in the database as one item, within an entity that may itself contain
many cross peaks. Likewise, assignment information for one spe-
cific assignment might be stored in the database as a single item
within an entity of multiple assignments.

An item itself is composed of several data elements. Each individual
datum within an item is an element. Thus, one cross-peak item con-

FELIX Command Language Reference/ March 2002 73

tains center and width elements for all dimensions, and one assignment item
contains atom-name and chemical-shift elements. The element is the smallest
unit of information in the database. An element is always one integer, one
floating-point value, or one ASCII string. Element names and types within an
item are defined by the corresponding schema file when an entity is built.

Entities are called Tables throughout the FELIX 2002 graphical user interface
(GUI). The two terms may be used interchangeably for the most part. See also
"Spreadsheet interface."

The database schema

The schema file is the format descriptor for an entity. It tells how many ele-
ments that an item of this entity must have, as well as the internal and external
format of each element. Schema are stored in the schema subdirectory and are
prefixed with the schpfx symbol.

Schema files are format sensitive. If you want to build your own schema file,
the order of the format descriptions must be the same as in the schema files
provided. Building your own schema files provides a mechanism to store and
output database information in any format you desire.

An example schema for storing 1D peaks (the line numbers are for explanation
purposes only) is:

1 c**asg.sch
2 asg 5
3 item i k 01 06 (1x,15)
4 cenpnt r k 01 10 (£10.5)
5 wid r 01 10 (f10.5)
6 cenppm r k 01 10 (£10.5)
7 name c 08 10 (2x,a8)
where:
Line 1:
A filename record, of the form c**, filename (a3,a)
Line 2:

A descriptor record, of the form schema_name, number_of_elements (a8,i2).
The number of elements is calculated for one occurrence of each element.

Line 3:

The first element. It must be item, as this is the primary access key for data-
base items. Always set the key flag for the item element by including the
letter "Kk" after the type identifier. Subsequent elements can be named at
your discretion. The formatting scheme for the element names and all sub-
sequent parameters must be:

(a8,1x,al,1x,al,i3,1i3,1x,a32)

The definition for each element in the schema is:

element type key internal size external size I/O_ format

where:

element (a8) element name

type (al) r=reali=integer c = ASCI

key (al) k = key on this element for sorting
internal size (i3) binary data size (words)

external size (i3) size of ASCII text of data

I/0 format (a32) FORTRAN format of element

In this example, all items within this entity would contain:
item, cenpnt, wid, cenppm, name

with a format of the form:
(1x, i5, f10.5, f10.5, £10.5, 2x, a8)

An example of the schema used for picking and storing multi-dimensional
data is:

1 c**xpk.sch

2 xpk 6

3 item i k 01 06 (1x,15)

4 #begin

5 cent r k 01 10 (£10.3)

6 wid# r 01 10 (f10.3)

7 ptr# r 01 06 (1x,15)

8 asg# r 16 18 (2x,ale6)

9 #end

10 cc r 01 06 (1x,f5.2)

In this instance, the number of elements stored in the database depends on the
dimensionality of the matrix. For 2D matrices, two center position elements
are created, named cenl and cen2. This applies to all the elements that fall
between the #begin and #end statements. Similarly, for 4D data, positions for
four assignment names (asgl, asg2, asg3, asg4) are created.

When building a new user-defined entity, the value of occur in the build string
is used to determine the number of occurrences in a receptive entity (see
below). You encounter this option when you build an entity from scratch:

dba entity build entity name schema occur

The dba entity build command creates one new empty entity called entity_
name. This new entity stores information in the format defined by the schema
file and is repeated the number of times set by occur. More information on this
procedure is found below.

Creating database information

Certain program commands extract spectrum information and it directly into
a database file. These commands look at the current values of specific symbols
to determine which files are current for that application. For this reason, open-
ing a database file must precede execution of these commands. For example,
the drx, pic, and vol commands need to access peak information before draw-
ing peak boxes, picking more peaks, and generating volumes. Since this infor-
mation is stored in the database file, this file must be open and current. By
default, the commands that store spectrum information in the database auto-
matically build their own entities. For example, the pic command uses the
value of the reserved symbol pksent to determine where to put the subse-
guently picked peaks. Likewise, the vol command uses the value of the
reserved symbol volent to store ND volume information in the entity.

Database command structure

Since the database facility is fairly sophisticated, we have developed a data-
base command mode separate from the FELIX command language. To enter
database mode, enter:

dba

Entering this command changes the command prompt to DBA>, indicating
that only database subcommands may be entered. The subcommands and
their required parameters may be entered on a single line (128 characters max-
imum).

After executing the command statement, the DBA> prompt reappears, wait-
ing for the next subcommand. To return to the FELIX prompt, enter one of the
database subcommands: bye, exit, or quit. Alternatively, you can place an
entire database command statement (starting with dba) on one line. After exe-
cution of the dba command, the program returns to the FELIX prompt.

Basic dba subcommands

In summary, the basic dba subcommands are:
dba
Activate database command mode.
dba bye
Exit database command mode.
dba exit
Exit database command mode.
dba quit

Exit database command mode.

Building database files

To build a new database file from scratch, you must issue the appropriate com-
mand for constructing a new file:

dba file build file name confirm

The file_name parameter names the file with the default .dba extension. This
file is placed in the directory defined by the dbapfx reserved symbol.

The confirm parameter is used to overwrite a database file that already exists.
A "y" overwrites a database file with the same name automatically, and an "n"
does not overwrite the database file (default).

Once a database file is built, you must explicitly open it:
dba file open file name

Once the database file is opened, you can subsequently pick peaks, integrate
volumes, make assignments, or otherwise access spectrum information.

To save the database file contents you must explicitly close the file:
dba file close confirm file name

The confirm parameter requires the values s or g. The s option saves the current
database file contents to disk with all changes; q discards all the changes
you’ve made to the database since the database file was first opened. To change
between databases, you must first close the current database file before open-
ing or building a new one. The file_name parameter is used for saving the DBA
to another filename and is optional.

To list the directory (contents) of the current database file, use the show com-
mand:

dba file show

To determine whether the contents of a database have been modified, use the
mod command:

dba file mod symbol

If the database has been modified since it was last saved, the resultant value of
symbol is 1. If the database has not been modified, the value of symbol is 0.

To write out all database entities into a set of ASCII files, use the command:
dba ascii dir name

This command writes out all entities into the dir_name directory.

From this directory you can restore a database using the command:
dba restore dir name

This destroys all entities in the current database, so it should be used only with
a clean database.

dba file subcommands

In review, the dba file subcommands are:

dba file open file_name
Open database file
dba file close confirm file_name
Close database file
dba file delete confirm
Delete database file
dba file build file_name confirm
Build database file
dba file show
Database directory
dba file mod symbol
Database modified query
dba file ascii dir_name
Write ASCII files
dba file restore dir_name

Restore database

Database entities

Building an entity

As mentioned above, a schema file, which is created when an entity is built,
defines the format for all items in an entity. The schema thus functions as the
item template for an entity: it contains the element names, data types, and
ASCII text format that precisely define the contents and layout of every item
in that entity. Schema are explained in more detail in "The database schema.”

You can build an entity for storing spectrum information using the command:
dba entity build entity name schema occur

The dba entity build command creates one new empty entity called entity_
name. This new entity stores information in the format defined by the schema
file and repeats it the number of times set by occur. For example, if you want to
build an entity for storing NOE buildup intensities at 6 mixing times, the for-
mat for a single intensity could be defined in the schema, and the intensity
field would be repeated occur (i.e., six) times.

Entities can be deleted from the database using the command:
dba entity delete entity name

To list the contents of an entity on the screen, use the show command:
dba entity show entity name

This prints the contents of the specified entity on the screen in the format
defined by the schema for that entity.

Converting an entity

To generate an ASCII file of an entity for output, editing, or analysis, use the
command:

dba entity write entity file name

The first line of this file is a copy of the filename. The next line is the schema
name and number of occurrences. The other lines in the file are the data con-
tents of the entity written in the defined schema format.

To read the ASCII file of an entity that you have modified back into the pro-
gram, use the command:

dba entity read entity file name

This command reads a file where the first line is a filename. The next line after
the filename must be the schema name and number of occurrences. The
remaining lines of the ASCII file are read, as items to be stored in this new
entity, using that schema format. This feature is most useful for editing existing
entity information rather than for building new information from scratch.
Therefore, we suggest that you use the dba entity read command in conjunc-
tion with the dba entity write command.

In some instances, you may want to read items of one entity while directly
altering another entity. The command:

dba entity current entity name

addresses this need by presetting the item buffer to one entity without specif-
ically loading an item from that entity. See below for more information about
the item buffer.

Entities can be copied to a new entity based on the same schema with the com-
mand:

dba entity copy old entity new entity renumber

When renumber is zero, all item numbers remain the same. When renumber is
non-zero, all items are renumbered so that the first item is number renumber,
and all other item numbers increment by one.

An entity can be converted to a new entity based on a slightly different schema
with the command:

dba entity filter old entity new entity new schema constants

For every item in the entity, all elements that match name for name between
the old schema and the new schema are copied. Any elements of the new
schema that are not present in the old schema may be filled in with a constant
value by including constant parameters on the command line in the form ele-
ment=value.

Selected ranges of elements for every item can be put into a file with the com-
mand:

dba entity put entity file name first_elm last elm

For every item in the entity, a line is written to the file containing the values of
the elements in the range from first_elm to last_elm, inclusive. Both first_elm and
last_elm are integer element numbers. Optionally, if the file_name is entered as

"#", then the lines are appended to the current FELIX output file. See the
descriptions of the opn and put commands in Appendix A, Command Refer-
ence, for more information about output files.

The schema file that an entity is built from is available with the command:
dba entity schema entity symbol

This sets the value of symbol to be the name of the schema file, without the pre-
fix or .sch extension.

The spreadsheet interface to the database is described below.

Integrity testing an entity

dba entity subcommands

The database also provides a command for integrity testing an entity. All enti-
ties have special indexing trees for all keyed elements (elements that have a "k"
in the schema file). These index trees provide fast search of and access to items
in the entity. The entity can be tested for integrity with the command:

dba entity test entity

An entity must pass this test. There is no way to recover an entity that fails.
However, if an entity does fail, it is usually only on some of the keyed elements
and not on all elements. In most cases, you can still write the entity to a file
(dba entity write) and then read the file back into another entity (dba entity
read) and the entity integrity will be restored. This command is for debugging
purposes only.

In review, the database entity subcommands are:
dba entity current entity_name
Activate entity
dba entity read entity file_name
Read ASCII file
dba entity write entity_name
Write ASCII file
dba entity delete entity_name
Delete entity
dba entity build entity schema occur
Build new entity
dba entity show
Show entity contents
dba entity copy old_entity new_entity renumber
Copy entity
dba entity filter old_entity new_entity new_schema constants

Filter entity

dba entity put entity file_name first_elm last_elm
Put entity to file

dba entity schema entity symbol
Get schema file name

dba entity test entity
Test entity integrity

Database items and elements

item buffer

An item is defined as one unit of data within an entity. An item itself is com-
posed of several data elements. The individual datum within an item is an ele-
ment.

The element is the smallest unit of information in the database. An element is
always one integer, one floating-point value, or one ASCII string. Element
names and types within an item are defined by the schema file when an entity
is built. The only restriction is that the first element within an item always be
an integer with an element name of item.

Since items can contain a number of elements (up to 20 total) of several types
(integer, floating point, ASCII), each with its own unique element name, a sim-
ple and universal item interface is essential.

To this end, the database command interface provides one generic buffer and
a collection of item and element subcommands for accessing this buffer. These
subcommands allow you to move data values into and out of any element of
any item of any entity. The item subcommands move items from an entity into
the item buffer and store items back in their place in the entity. The element
subcommands move individual elements from the item buffer into symbols,
then store new values back into elements in the item buffer.

To load an item into the item buffer, use the command:
dba item load entity.item#

The item# is the identifying marker for that item and is simply the item ele-
ment.

To load any element from the item buffer into a symbol, use the command:
dba element load element symbol
This loads the value of the specified element into the symbol you’ve named.

To store information back into the database file, you must first store the value
of an element in the item buffer, which must then be stored in an item in the
entity. For example:

> dba element store element value
stores the current value in the specified element in the item buffer.

To store the item buffer back in your database file, the above command would
be followed by:

> dba item store entity.item#
Database items can also be deleted from an entity using the command:
dba item delete entity.item#

Only the specified item is affected. No renumbering of other items occurs. This
command is useful for permanently removing spectrum information from the
database file.

To show the current contents of an item, use:
dba item show entity.item#

The dba item show command prints the contents of one item of one entity. To
show the contents of the item buffer itself, you can use dba item show 0 (the
item buffer is item number 0 by default). Likewise, the command:

dba element show entity.item#.element
shows the contents of the specified element to the screen.

In conclusion, to use the dba item and dba element commands to change the
current value of an element within an item, you follow these steps:

1. Load the desired item from the entity to the item buffer.
2. Load the desired element into a symbol.

3. Store new values in an element.

4. Store the item back in the database.

Alternatively, to create new items you would:

1. Build a new entity from a schema.

2. Make the new entity current.

3. Store values in all elements.
4

. Store the item buffer to any one item.

Element storing shortcuts

The FELIX 2002 database also has some shortcut methods for loading and stor-
ing elements. One method allows you to bypass the use of the item buffer and
get values directly from the entity. This is most useful if you need only one ele-
ment value from an item. The command:

dba element load entity.item#.element symbol

loads one element directly from the entity into a symbol. This is equivalent to
the two commands:

dba item load entity.item#
dba element load element symbol

Likewise, to store a value to a single element in an item, the command:
dba element store entity.item#.element value

is equivalent to the three commands:

dba item load entity.item#

dba element store element value
dba item store entity.item#

The second shortcut method allows loading or storing adjacent elements in an
item with a single command. The elements must be adjacent. With the dba ele-
ment load command, if the command line has multiple symbol parameters,
then multiple elements are loaded to those symbols. Likewise, with the dba
element store command, if the command line has multiple value parameters,
the multiple values are stored to those elements. In the item buffer method, the
command format is:

dba element load element 1 symbol 1 ... symbol N
dba element store element 1 value 1 ... value N
while for the entity direct method, the command format is:

dba element load entity.item#.element 1 symbol 1 ... symbol_
N

dba element store entity.item#.element 1 value 1 ... value N

These different access methods provide the fastest possible runtime access to
the database contents. The basic guidelines for speediest access are:

1. To load multiple elements and then store one or more elements, use the
item buffer.

2. To load just one element, use the entity direct method.
3. To load or store multiple adjacent elements, use the multiple parameters
method.
dba item and element subcommands
In review, the dba item and dba element subcommands are:
dba item load entity.item
Load an item to the item buffer
dba item store entity.item
Store item buffer to an item in the entity
dba item show entity.item
Print contents of an item
dba item delete entity.item
Delete an item from an entity
dba element load element symbol
Load an element from the item buffer
dba element load entity.item.element symbol
Load an element from an entity to a symbol
dba element store element value

Store a value into an element of the item buffer

dba element store entity.item.element value

Store a value into an element of an entity

Database item lists

Item lists

The FELIX 2002 database also has utilities for fast read-only perusal of entities.
In addition to accessing explicit items one by one via the item buffer, you can
also generate and manipulate complete lists of item numbers.

Because these lists occupy the 1D buffers, the buffers may require configuring
to contain large lists. These lists know only how to hold pointers to items in an
entity and do not actually store data-items themselves. In using these pointers
to access spectrum information, you must still specify specific items and ele-

ments using the commands described above.

The purpose of item lists is to help maximize the speed of database queries.
Instead of explicitly loading every item one at a time and testing various ele-
ments for a condition to see if that item meets the criterion, the item list com-
mands generate the set of items that meet a criterion in a single step. You can
then work with just those items in the list, knowing that they satisfy the crite-
rion. Because you can avoid looking at every item explicitly, you save consid-
erable time.

As an example, locate a range of items within a database. This is accomplished
using the following dba list command sequence:

dba list range list # entity element low high symbol
More specifically, the command statement:
dba list range 1 xpk:peaks cenl 200 500 pknum

puts the item numbers of all of the cross-peak footprints from the entity
xpk:peaks, whose centers in D1 (cenl) are between 200 and 500 point units,
into list "1". The number of items that meet this criterion is returned in the sym-
bol pknum. You can then use dba list show list_# to view the resulting list. For
example, if seven items meet the above criterion, list 1 might appear as:

slot #= 1 item#=4
slot #= 2 item#=309
slot #= 3 item#=17
slot #= 4 item#=90
slot #= 5 item#=8
slot #= 6 item#=5
slot #= 7 item#=99

In this list, each slot number contains an item number. For use within a macro,
the following sequence prints the D1 centers on the screen, one per line:

1 dba list range 1 xpk:peaks cenl 200 500 pknum

2 for loop 1 &pknum

3 dba list load 1 &loop tstitm

4 dba element load xpk:peaks.&tstitm.cenl cenval
5 ty peak=&tstitm D1 center=&cenval

6 next

The first line creates a list of cross peaks, with centers between points 200 and
500 in the first dimension. The second line sets up a loop to move through each
item in the list. Because pknum number of peaks were found using the dba list
range command, the loop executes pknum cycles.The third line loads each
item from the list, saving the item number as the symbol tstitm. The fourth line
loads the value of an element within the selected item to the symbol cenval.
Line five prints the value of the symbol cenval, and line six exits the for loop.
Using this logic, values for any element in the database, or even database items
themselves, can be modified.

dba list subcommands

The dba list subcommands are given below, with brief descriptions of their
functions.

dba list add1 list value

This command appends one value (item #) to the end of a list. If the value is
already in the list, the item # is not added again.

dba list count list symbol

This command loads the count (number of item #’s) of a list into a FELIX sym-
bol.

dba list dell list value

This command deletes one value (item #) from a list. If the value is not found
in the list, no deletion occurs. Note that delete looks at the value in a slot, not
at slot numbers.

dba list difference listl list2 list3

This command builds a new list that is the set difference of two lists. The
resulting list number may be one of the input lists. The result list3 contains
only those item numbers from listl that are not present in list2.

dba list entity list symbol

This command extracts the entity ID number from the given list. The ID num-
ber is the same value as returned by the db$entity() function.

dba list find list value symbol

This command finds one value (item #) in a list and puts the result into a sym-
bol. If the value is not found in the list, the result is zero. When the value (item
#) is found, the result is the slot number containing that item #.

dba list intersect listl list2 list3

This command builds a new list that is the set intersection of two lists. The
result list3 may be one of the input lists. The result list3 only contains those
item numbers that were in both listl and list2.

dba list load list slot symbol

This command loads the current contents of one slot of one list (an item#) into
a FELIX symbol.

dba list match list entity element match_string symbol

This command builds a list of all items where the given element matches a
wildcard string. This command is only applicable for character-string ele-
ments. The normal rules for using wildcards in the match string apply. The
number of items placed in the list is returned in symbol.

dba list exact list entity element match_string symbol

This command builds a list of all items where the given element matches a
string taken literally, that is, the * is not interpreted as a wildcard but as a letter.
This command is only applicable for character-string elements. The number of
items placed in the list is returned in symbol.

dba list move listl list2

This command copies listl to list2.

dba list range list entity element low high symbol

This command builds a list of item numbers in a range based on the values for
a single element. You specify an entity name to search, an element name to
select, and the desired range values. The result is a list, built to contain all the
item #’s having that element within the requested range. The item numbers are
ordered such that the element values are in increasing order. The number of
items placed in the list is returned in symbol.

dba list show list

This command shows the contents of one list.

dba list sort list key up/down

This command sorts the contents of one list. The basic sort is limited to ele-
ments containing numeric fields. The list may be sorted in ascending or
descending order. Item numbers are rearranged in the list so that they occur in
the sorted order.

You can sort on a key other than the item number in two ways. First, you can
sort a list of item #’s, keying on any numeric element in that item. In this
method, the item numbers are rearranged so that the values of the key element
occur in the sorted order.

The second way to sort a database list involves the 1D workspace WORK. For
a list with N item numbers, load the first N points of WORK with real values,
one for each item# (that is, WORK(i) = function (item# at LIST(i))). Instead of

an element number or name for the sort key, use the name "WORK" as the key.
The item numbers (and the contents of WORK) are rearranged so that the val-
ues in WORK occur in sorted order. This lets you order the item numbers in a
database list based on any criterion that you can quantify.

dba list union listl list2 list3

dba list zero list entity

dba list parameters

This command builds a list that is the set union of two lists. The resulting list3
may be one of the input lists. list3 contains the item numbers that were in either
listl or list2.

This command zeros one list by setting the list count to zero and pre-setting
the entity owner of this list. A list must be zeroed before you can build a new
list from scratch using the dba list add1l command. The new list needs an
entity owner to keep track of which dataset the items of this list belong to.

The dba list parameters are:

element name of one element in this entity

entity name of one entity (owner of this list)
high high value for setting range limits

key element number or name, as the key to sort on
list number of one list [range 1 ... n_buffers]
low low value for setting range limits
match_string wildcard ASCII string to match against
slot number of one list slot [range 1 ... list size]
symbol symbol loaded from contents of slot in list
up/down sort order: 0=ascending, 1=descending
valu value to add to or delete from a list

Creating lists of information

The database list subcommands discussed above are specifically designed to
let you manipulate arrays of spectrum information. In addition, the database
list subcommands let you build lists from scratch using the dba list add1 and
dba list range commands.

For certain applications, however, it is more efficient to provide specific com-
mands for building lists automatically. The xpl command generates a database
list of item numbers from cross-peak entities based on the options listed below.
These all function as described below and are equivalent to a series of dba list
commands, but they operate much more quickly.

Please refer to the xpl command in Appendix A, Command Reference, for more
information.

xpl subcommands

xpl box list entity d1llow d1lhi d2low d2hi ... symbol

This command makes a list of all cross peaks inside an ND box. All peaks hav-
ing center-point values inside the box limits are put in the list. The box may ref-
erence outside the current plot limits. The box limits are in points. When d1low
is negative, no other box limits are needed. Instead, box limits are defined by
using the spot cursor to draw a rectangle around a region of the current ND
plot. The value placed in symbol represents the number of items placed in the
list.

xpl touch_box list entity d1low d1hi d2low d2hi ... symbol

This command makes a list of all cross peaks inside an ND box. All peaks hav-
ing at least part of the peakbox touching the box limits are put in the list. The
box may reference outside the current plot limits. The box limits are in points.
When dllow is negative, no other box limits are needed. Instead, box limits are
defined by using the spot cursor to draw a rectangle around a region of the cur-
rent ND plot. The value placed in symbol represents the number of items placed
in the list.

xpl inside_box list entity d1llow d1hi d2low d2hi ... symbol

This command makes a list of all cross peaks inside an ND box. All peaks hav-
ing their full peakbox inside the box limits are put in the list. The box may ref-
erence outside the current plot limits. The box limits are in points. When d1low
is negative, no other box limits are needed. Instead, box limits are defined by
using the spot cursor to draw a rectangle around a region of the current ND
plot. The value placed in symbol represents the number of items placed in the
list.

xpl line list entity dimension point symbol

This makes a list of cross peaks touched by a line in one dimension. All cross
peaks in the entity are candidates because plot limits have no effect. The value
placed in symbol represents the number of items placed in the list.

xpl point list entity d1point d2point ... symbol

This command finds all cross peaks touching an ND point. All peaks with their
footprints (center plus width) encompassing the given ND point are put in the
list. The point may reference outside the current plot limits. The ND point is
given in points. When d1point is negative, no other dimensional points are
given, instead the point is selected using the cross-hair pointer. The value
placed in symbol represents the number of items placed in the list.

xpl range list entity dimension lowpt hipt symbol

This command makes a list of all peaks within a range in the specified dimen-
sion. All cross peaks in the entity are candidates, and currently displayed plot

limits have no effect. The value placed in symbol represents the number of
items placed in the list.

xpl name list entity dimension match string symbol

This command makes a list of all peaks, with an assignment name in that
dimension that matches the given character string. The value placed in symbol
represents the number of items placed in the list.

xpl frequency list entity dimension freq_list# resolution symbol

This command makes a list of all peaks that align with a frequency list in that
dimension within the given resolution. The value placed in symbol represents
the number of items placed in the list.

xpl pattern list entity dimension pattern_id resolution spectrum_id
symbol

This command makes a list of all peaks, with position in that dimension, that
align within the resolution with the given pattern’s (pattern_id) frequencies
from the Assign database. The generic or spectrum-specific shifts of the fre-
quencies are used, depending on the spectrum_id parameter. The value placed
in symbol represents the number of items placed in the list.

xpl clipboard list entity dimension resolution symbol

This command makes a list of all peaks, with position in that dimension, that
align within the resolution with the frequencies in the clipboard from the
Assign database. The value placed in symbol represents the number of items
placed in the list.

xpl proto list entity dimension proto_# resolution symbol

This command makes a list of all peaks, with position in that dimension, that
align within the resolution with the given protopattern’s (proto_#) frequencies
from the Assign database. The value placed in symbol represents the number
of items placed in the list.

xpl pt list entity dimension assignment_ptr symbol
This command makes a list of all peaks, with an assignment pointer in that

dimension, that matches the given assignment pointer. The value placed in
symbol represents the number of items placed in the list.

Spreadsheet interface

The database can be viewed and modified through a visual spreadsheet (table)
interface. This section describes the commands of this interface.

Similar to a spectral frame, a spreadsheet is a child window (called table
frame) inside the FELIX main window. A table frame usually has its own menu
bar and toolbar. FELIX displays only the menu bar and toolbar for the cur-
rently active table or spectral frame. Therefore, you must highlight a frame to
access its menu items or toolbar icons.

There is a set of commands for you to compose and operate on tables. In all
these commands, the name of the table is used to refer to the table frame.

Table composition commands

Table menu command

The tbl com(pose) commands define a table from one or multiple entities in
the database and then display the table. The options are:

tbl com(pose) cre(ate) table name # of rows # of cols

This creates an empty table with # _of rows rows and #_of cols columns with
the table_name name.

tbl com(pose) dis(play) table name

This finishes the table definition and displays it. You fill in the table using the
tbl set commands.

You can create tables for whole entities using the following variation of the
compose command:

tbl com(pose) ent table name entity name

There are some specific database entities, which may be a combination of other
entities (for example, spin systems) or which may have a stored entity that is
different from the table view (for example, peaks or prototype patterns). These
entities require specific commands to view them:

tbl com(pose) xpk table_name entity_name
creates a peak table

tbl com(pose) pat table_name entity_name
creates a spin-system or pattern table

tbl com(pose) pro table_name entity_name
creates a prototype pattern table

The tbl pul(ldown) command allows you to to specify the menu bar using a
.mnu file:

tbl pul table name menu file

The format of such a .mnu file is described in Appendix , Menus and Control
Panels.

Table icon command

Table navigation

Table selection

The tbl ico command defines the tool bar using a .mot.file :
tbl ico table name icon file
The format of such a .mnu file is described in Appendix , Menus and Control
Panels.
Table frame layout commands
The following commands are used to manage the table frames from a macro:
tbl zero
closes all table frames.
tbl resize tblname x0 y0 xsize ysize

resizes a table frame to desired location and size. All are in pixels. x0 and y0 are
the x and y coordinates of the low-left corner of the frame and xsize and ysize
are the width and height, respectively.

tbl move tblname x0 yO0

moves a table frame to desired location. All are in pixels. x0 and y0 are the x
and y coordinates of the low-left corner of the frame, respectively.

tbl front tblname
activates a specified table frame.
tbl exist tblname symbol

checks if the specified table frame exists or not. If it exists, symbol has value of
1. Otherwise, 0.

The tbl jum(p) command allows you to move to a specific location in a table.
This moves the active cell or row to that position, too. The options are:

tbl jum cel table name row _number column_id
tbl jum row table name row_number

tbl jum col table name column id

The tbl sel(ect) command allows you to select or highlight a cell, row, column,
or the full table. The options are:

tbl sel cel table_name row_number column_id
selects (highlights) a cell of a specific row_number row and column_id column.

tbl sel row table_name row_number
selects a full row.

tbl sel col table_name column_id
selects a full column.

tbl sel all table_name
selects the full table.

Table unselection

The tbl uns(elect) command allows you to deselect or unhighlight a cell, row,
column, or the full table. The options are:

tbl uns cel table name row _number column_id
tbl uns row table name row_number
tbl uns col table name column id

tbl uns all table name

Set a table to an entity

The tbl ent(ity) command sets a table type to a specific entity. This command
does not fill in the table with the entity, in contrast to the tbl com(ment) com-
mand.

tbl ent table name entity

Querying selection status of a table

The tbl whi(ch) command returns a list of rows or columns that are selected or
highlighted:

tbl whi table name list# number of items type of selection

The number_of _items variable is 0 if none is selected and -1 if all are selected.
The selected row or column numbers are returned in the list# list, and the type_
of_selection symbol is set to 1 if rows are selected, to 2 if columns are selected,
or to 0 if neither rows nor columns are selected.

Querying an item
The tbl get command returns a string of a contents of a cell or row:
tbl get cel table name row number colum id string
returns the contents of a cell into string symbol, and:
tbl get row table name row number string

returns the contents of a whole row into the string symbol.

Deleting a row
The tbl del(ete) command deletes a row from the table_name table:

tbl del table name item number

Sorting a table by a column

The tbl sor(t) command sorts a table by a selected column and stores the sorted
row numbers in a list:

tbl sor table name column id order list#

Finding in a table

Adding a row

where order is descending (0) or ascending (1).

Note: This kind of sorting affects only the spreadsheet view
of the entity, not the entity itself.

The tbl fin(d) command finds all instances of items that match a certain crite-
rion and puts them into a list. The command works in a column. The resulting
list contains the item numbers. There are two forms -- one for finding strings:

tbl fin table name column id match type match value list#
number._of matches

where match_type can be exact matching (ex) where * are taken literally, or
wildcard matching (match), e.g.: a string in a form quot;*abc*".

The other form is for numeric comparisons:

tbl fin table name column id match type match value (match _
value2) list# number of matches

where match_type can be one of the following types:
eq

Equal to match_value
ne

Not equal to match_value

Less than match_value
le
Less or equal to match_value
gt
Greater than match_value
ge
Greater or equal to match_value
wi
Within match_value and match_value2
ou

Less than match_value or greater than match_value2

The tbl add command add a new row to the end of a table:
tbl add table name rownumber

The row can then be filled with the tbl set command. The rownumber symbol
is returned by the command.

Querying the number of tables active

Closing a table

The tbl who command returns the number of tables active in FELIX in the
num_tables variable or the name of the table in the table_name variable, if a spe-
cific table is defined in the table# variable:

tbl who num tables

tbl who table table name

The tbl clo(se) command closes a table, but does not destroy the database
entity:

tbl clo table name

Querying the number of rows

The tbl row command returns the number of rows in a table:

tbl row table name number of rows

Querying the number of columns

Setting a value

Double-click action

Column width

The tbl col(umn) command returns the number of columns in a table:

tbl col table name number of columns

The tbl set commands allow you to set the value of a row, column, or cell or to
set the item number to a particular value:

tbl set cell table name row id column id value

This sets the (row_id,coumn_id) cell to value. To set cells in a full row, use this
command:

tbl set row table name row id value value2 ...
The column command sets the title of the column:

tbl set column table name column id value

The tbl dbc command allows you to connect a macro to a row double-click, so
that double-clicking a row with the cursor executes the macro and passes the
row number to the macro:

tbl dbc table name macro name

The tbl wid(th) command allows you to set the width of a column in charac-
ters:

tbl wid table name column id width in characters

Updating the table

Querying the item

Table callback

The tbl upd(ate) command allows you to update a table after an entity has
been changed:

tbl upd table name
This updates the full table.
tbl upd table name item number

This updates a particular item in the row or adds a new row with that item
from the entity. The entity update from the table happens automatically.

The tbl ite(m) command allows you to query the row number where a specific
database item is shown in the table:

tbl ite table name item number row_number

The returned value of row_number is greater than zero if it is found or zero in
case of error.

When you select a menu item or click a toolbar icon, a callback macro associ-

ated the command is executed immediately. While a command from the main
menu and main toolbar (associated with a spectral frame) always calls the call-
back macro exactly once, a command from a table has a slightly different way
of callback control.

As described in the section, “Changing the menubar interface”in Appendix,
Menus and Control Panels, a menu item has the following format:

item LABEL HOTKEY ACCELKEY CALLBACK CBCONTROL NULL DEPEND

If it is a command for a table, the method to call the CALLBACK command
depends on the current selections in the table and the value of CBCONTROL:

If CBCONTROL = NULL or 0, the CALLBACK command is executed N+1
times, where N is the number of cells/rows/colums selected. For each cell/
row/column selected, the CALLBACK command is executed with some
appended parameters:

CALLBACK table name item number row number column number
And after the last one, the terminating call:
CALLBACK table _name -1 -1 -1

If a full row is selected, the column_number is 0. If a full column is selected, the
row_number is 0 and the item_number is 0.

If CBCONTROL =1, the CALLBACK command is executed twice, first for the
first cell/row/column selected, with the appended parameters:

CALLBACK table name item number row number column number
And after the last one, the terminating call:

CALLBACK table name -1 -1 -1

If CBCONTROL =2, the CALLBACK command is executed only once with
appended parameters:

CALLBACK table name -1 -1 -1
For example, if a menu item defined as the following:
item "Select" S NULL NULL "ex select 1" NULL NULL

is selected from a table xpk-peaks, while two rows (#1 and #2) are selected, the
following commands will be executed:

ex select 1 xpk:peaks 1 1 0
ex select 1 xpk:peaks 2 2 0

ex select 1 xpk:peaks -1 -1 -1

¢5 A Command Reference

abl — Automatic baseline flattening

abl noise points line points

noise points number of points for noise convolution
line points number of points for widest line

The abl command first determines whether each point in the work
space is baseline or not. abl then goes through all points, convolving
baseline points with a moving average and applying a straight-line
correction to non-baseline intervals. This algorithm was developed
by W. Massefski.

abl is very robust and requires as input only estimates of the point-
wise half width of the widest spectral line and the desired convolu-
tion width for noise. This algorithm has the unusual characteristic of
not only flattening the baseline, but convolution of baseline inter-
vals actually reduces the noise level. abl does an excellent job on
sparsely populated spectra such as slices of multidimensional data
that contain mostly baseline. For reliable operation, line points
should be set much larger than noise points, otherwise abl may inter-
pret the tails of peaks as noise and bite chunks out of them.

Since abl selects unique baseline points for each spectrum, it is not
necessary to define a list of baseline points, nor are the points used
saved in the baseline entity.

See also

flf — FaceLift baseline correction

FELIX Command Language Reference/ March 2002 97

abp — Automatic baseline point selection using FLATT
algorithm

abp baseline_width chi tau stride

baseline-width number of points in linear fit

chi minimum chi square
tau cutoff factor
stride set interval for baseline point testing

abp uses the FLATT algorithm (Guntert, 1992) for selecting baseline points in
a spectrum. The resulting points are stored in the entity whose name is stored
in the basent symbol. Before running the abp command, you may decide to run
the chi command: the value returned by the chi command is stored in the chi
symbol and is read automatically by abp.

abp begins by calculating the chi-square value for a fit of (2*baseline_width + 1)
data values to a straight line at points (1 + baseline_width) to (npoint - baseline_
width).

The command works by comparing the minimum chi-square value in an inter-
val of (baseline_width * 2/3) that is centered on point (baseline_width/3 + 1). If
the minimum chi-square value is less than (tau * chi), the central point is stored
in the baseline point entity. The comparison is repeated every stride points.

Symbol dependence

chi Minimum chi-square value

See also

chi — Calculate minimum chi-square value
flt — FLATT baseline flattening
flf — FaceLift baseline correction

abq — Automatic selection of baseline points

abq interval size standard deviation

interval size interval size used for selection of base points
standard deviation maximum deviation allowed for baseline points

abq selects baseline points of the data in the work space automatically, and
places the resulting points in a database entity defined by the symbol basent.

If no parameters are entered, abq uses defaults that work well for most spectra.
First, abq divides the data in the work space into segments of interval size in
points. For each segment, it calculates the mean data value of the points and
the deviation of each point from the mean.

Next, it collects the largest deviation value, which is called the segment devia-
tion, from each segment and orders them from smallest to largest.

Finally, any segment with a segment deviation that is less than a cutoff value
is to determined to be baseline. The cutoff value is calculated as the product of
standard deviation and the smallest segment deviation value. The bas com-
mand can be used to add or delete baseline points in the baseline entity.

Following abq, a polynomial or cubic spline baseline correction may be exe-
cuted using either polynomial baseline correction (pol) or cubic spline baseline
correction (csp).

Symbol dependence:

basent Defines Baseline Points Entity

See also

csp — Cubic spline baseline correction
fIf — FaceLift baseline correction

pol — Polynomial baseline correction

bas — Baseline points manipulation

abs — Absolute value replacement of work

abs

abs replaces each point in the workspace with its absolute value, i.e.:

value = Jvalue]

abs should not be confused with ms, which calculates the absolute magnitude
of complex points.

Symbol dependence

datsiz Number of Data Points

See also
ms — Magnitude spectrum

ps — Power spectrum

adb — Add work to buffer

adb buffer number

buffer number number of buffer to which to add the data in the work
space

adb adds the data in the work space to the specified buffer. This command is
very useful for saving intermediate results or for generating projections of
multidimensional spectra.

Symbol dependence
datsiz Number of Data Points

datype Data Type

See also
Idb — Load buffer into work space
mwb — Multiply work by buffer

stb — Store work space to buffer

add — Add number to work

add number

number number to be added to work

add adds the specified number value to each data point in the work space.

Symbol dependence
datsiz Number of Data Points

datype Data Type

See also

mul — Multiply the work space by a number

aln — Antilogarithm (exponential) of work

aln

aln replaces each data value of the workspace with e(work), its natural (base
e) antilogarithm or exponential. The aln command is the inverse of the loga-
rithm of workspace (log) command.

Symbol dependence

datsiz Number of Data Points

See also

log — Natural logarithm of work space

alt — Alternating real/imaginary

alt

alt changes data consisting of separate real and imaginary parts to alternating
real and imaginary parts. All complex data within FELIX is processed in the
alternating mode. The alt command is thus useful for restoring imaginary
parts of N-dimensional hyper-complex spectra (separated using sep) for phas-
ing after transformation. alt defines the data type to be complex (datype=1)
and sets the data size (datsiz) to half the original number of real points.
Symbol dependence

datsiz Number of Data Points

datype Data Type

Symbol Changed
datype Data Type

See also

sep — Separate real and imaginary

ann — Annotate plot

ann

ann annotates the current plot according to the contents of the file designated
by the symbol annfil. The annotation file contains annotation commands. To
annotate hardcopy plots, define the symbol pltann to 1 before issuing the hcp
command.

Symbol dependence

annfil Annotation File

annpfx Annotation Prefix

See also

arr — Arrow annotation

lin — Line annotation

tex — Text annotation

gre — Greek text annotation

rec — Rectangle annotation

aph — Autophase spectrum
aph
aph zero
aph exclude dim minpt maxpt
aph exclude

aph calculate opt peak_width min_phasel max_phasel

aph provides functions for automatic phase correction for 1D and ND spectra.
For details see Chapter 1, "Theory", in the FELIX User Guide.

Used without subcommands, aph calculates the phase error and corrects the
spectrum displayed in the workspace. It is sensitive to several factors, includ-
ing bad baselines. Autophasing a spectrum that has a large amount of baseline
roll does not yield a well phased spectrum. aph by itself is recommended for
proton spectra. It does not use the excluded areas as it does when subcom-
mands are included.

aph zero removes all defined excluded areas.

aph exclude adds an excluded area that is ignored while computing the phase
parameters using the aph cal subcommand. Any datapoints falling between
minpt and maxpt along dimension dim are ignored. An excluded area is usu-
ally a solvent region. Up to 10 excluded areas can be defined. If dim, minpt,
and maxpt are not specified, aph exclude displays the currently defined
excluded areas.

aph calculate calculates the zero and first-order phase parameters for a 1D
spectrum in the workspace or for a certain dimension of the current 2D or 3D
spectrum. It does not change the spectrum.

opt opt =dim * 10 + method.
If dim =0, the 1D spectrum in the workspace is used.
Otherwise, the dimension Ddim (D1, D2, or D3) of

an ND spectrum is used.

If method =0, the PAMPAS method is used for phase
error detection.

If method = 1, the APSL method is used for phase
error detection.

If method = 2, the integration method is used for cal-
culation of phase parameters (in 1D spectra only.)

peak width Minimum peak width at the half height for a sample
peak. Sample peaks are used to fit phase param-
eters. Recommended value 3-6. Default = 3.

min_phasel Lower limit of phasel, the first-order phase. Default =
-720.

max_phasel Upper limit of phasel. Default = +720.

Symbols changed

phase0 Zero order phase correction

phasel First order phase correction

See also

ph — Phase correction

rph — Real-time phase

arr — Arrow annotation

arr X0 YO (20 (A0)) X1 Y1 (Z1 (A1)

X0 x-coordinate for starting position of arrow
YO y-coordinate for starting position of arrow

Z0 optional z-coordinate for starting position of arrow if matrix is
more than 2D

A0 optional a-coordinate for starting position of arrow if matrix is
more than 3D

X1 x-coordinate for ending position of arrow
Y1 y-coordinate for ending position of arrow

Z1 optional z-coordinate for ending position of arrow if matrix is
more than 2D

Al optional a-coordinate for ending position of arrow if matrix is
more than 3D

arr draws an arrow on the current plot with its tail at the (X0,Y0) point and its
head at the (X1,Y1) point. The optional coordinates are useful if the matrix is a
3D or 4D and the current plot is a strip plot. The arrow should be drawn start-
ing in one strip and ending in another strip, where the strips are taken from
different slices of the ND matrix. All arrow coordinates are interpreted based
on the symbol annunt according to the following table:

annunt
value coordinate interpretation

normalized in plot

normalized in frame

axis units

points

4 ppm

The color of the line is determined by the symbol anncol, the style of the line

(solid or dashed) is defined by annlst and size of the arrowhead is determined
by the symbol annasz.

W N - O

Symbol dependence
anncol Annotation Color
annasz Arrowhead Size
annlst Annotation Line Style

annunt Annotation Units

See also
ann — Annotate plot

lin — Line annotation

bas — Baseline points manipulation

bas op parameters

bas provides the ability to assemble and display the array of points that are
required for baseline correction. The entire array of points may be selected
interactively, or alternatively, baseline points may be selected automatically
using abq, and additional points may be added manually.

The x-axis point value specifies the data point to add to the baseline points
database entity (by default, bas:baseline). A parameter value of -1 for add
enables a crosshair cursor for point selection. The entire array of baseline
points may be discarded by invoking bas zero.

The baseline points manipulation operators and their parameters are below:
bas add x-axis point value
bas show

bas zero

Symbol dependence

basent Baseline Entity

See also

abg — Automatic selection of baseline points
csp — Cubic spline baseline correction

fIf — FaceL.ift baseline correction

pol — Polynomial baseline correction

bc — Baseline correct

bc fraction

fraction fraction of data used to compute baseline offset; default =
0.25 (last 1/4 of FID)

bc removes a DC offset of the FID baseline (DC offset creates a spike at the car-
rier frequency) by subtracting the offset from work. bc will work properly only
if the data at the end of the FID is a baseline. Adequate DC offset correction is
usually obtained by using the default fraction value of 0.25, although, for FTIR,
fraction is set to 1.0, and bc is computed on the entire contents of the work
space, as there is no intensity at zero frequency.

Symbol dependence

datsiz Number of Data Points

bck — Back-calculate NOE intensities

bck spin shift bckxpk bckvol mix rleak

bck calculates expected NOE cross peak intensities from the structure in the
entity xyz:atoms. Chemical shifts and line widths are extracted from the shift
entity, and a cross peak entity bckxpk and corresponding volume entity bckvol
are built. The volumes are calculated for the specified mixing time mix in sec-
onds.

The rleak parameter specifies the leakage rate of Z-magnetization over time
and is in sec-1 units. The cross-relaxation rate is determined by the symbol tau-
cee in ns units.

The symbol bckrad allows you to save time by ignoring spin pairs further apart
than bckrad A. This algorithm generates NOE intensity by using matrix dou-
bling at a spectrometer frequency spcfrq in MHz units.

The symbol minzee is used to filter out interactions below some sensible thresh-
old that would not be observed experimentally. There is an upper limit of 2048
spins for the simulation.

There is another form of this command which can be used in conjunction with
the Assign module:

bck spectrum_id bckxpk bekvol mix rleak

Once you have a spectrum_id spectrum defined in the Assign database, FELIX
2002 calculates the theoretical spectrum using all the information in the data-
base (e.g., assigned patterns, assigned peaks, mixing times, transfer types, and
spectrometer frequencies). That also means that if the spectrum specified is a
3D NOE-NOE, then FELIX will back-calculate a 3D NOE-NOE theoretical
spectrum.

The theory behind bck is described in Chapter 2, "Theory", in the FELIX User
Guide. bck will efficiently generate expected spectra, and is very useful when
generating structures from NOE data.

Symbol dependence

taucee Correlation Time (ns)

bckrad Back-Calculation Radius (A)

minzee Minimum Z-Magnetization

spcfrq Spectrometer Frequency (MHZz)

bft — Bruker-Fourier transform

bft

bft transforms a Bruker FID in the workspace into a frequency-domain spec-
trum. Many Bruker spectrometers acquire real and imaginary data at alternate
points in time rather than simultaneously, resulting in rolling baselines and
phase errors. Modern Bruker spectrometers are capable of true quadrature,
and we recommend that you use this acquisition mode if possible.

Symbol dependence

datsiz Number of Data Points

datype Data Type

See also
ft — Fast Fourier transform
rft — Real Fourier transform

ift — Inverse Fourier transform

bir — Read database from Insight Il

This set of commands allows you to read the NMR Refine database files from
the disk.

bir pks file

file Insight Il peak file (.pks)

bir pks reads an Insight Il peak file into the current peak entity (table).
bir asn file

file Insight Il peak assignment file (.asn)
bir asn reads an Insight 1l peak assignment file into the current peak entity
(table).

bir ppm file

file Insight Il resonance assignment file (.ppm)

bir ppm reads an Insight 1l resonance assignment file into the current pattern
entity (table).

Note: This deletes all the existing patterns from the Assign
project.

bir rstrnt file

file Insight Il restraint file (.rstrnt)

bir rstrnt reads an Insight Il restraint file into the current restraint entities
(tables).

Symbol dependence

pksent Current peak table

volent Current volume table

rpaent Current pattern table

rreent Current resonance table

See also
ins — Insight II-FELIX inter-process communication

biw — Write database to Insight |1

bit — Bit manipulation operators

bit clear maskin bit symbol

The bit clear command clears a bit in the mask to zero. If bit is less than one,
all bits in the mask are zeroed. The new bit mask is returned in symbol.

bit set maskin bit symbol

The bit set command sets a bit in the mask to one. If bit is less than one, all bits
in the mask are set to one. The new bit mask is returned in symbol.

bit test maskin bit symbol

The bit test command tests a bit in the mask. The value of that bit (zero or one)
is returned in symbol.

bit or maskl mask2 symbol

The bit or command combines two bit masks using the logical "or". The new
bit mask is returned in symbol.

bit and maskl mask2 symbol

The bit and command combines two bit masks using the logical "and". The
new bit mask is returned in symbol.

bit xor maskl mask2 symbol

The bit xor command combines two bit masks using the logical "xor". The new
bit mask is returned in symbol.

bit not maskin symbol

The bit not command reverses all the bits in a mask. The new bit mask is
returned in symbol.

The following parameters are used with the bit commands:
mask an integer bit mask

bit a bit number in the range 1 to 32
symbol the symbol to receive the resultant bit mask

biw — Write database to Insight |l

This set of commands allows you to write to the NMR Refine database files to
the disk.

biw pks file

file Insight Il peak file (.pks)

biw pks writes an Insight Il peak file to the disk using the current peak entity
(table).

biw asn file

file Insight Il peak assignment file (.asn)

biw asn writes an Insight Il peak assignment file to the disk using the assign-
ments in the current peak entity (table).

biw ppm file

file Insight Il resonance assignment file (.ppm)

biw ppm writes an Insight Il resonance assignment file to the file using the
current pattern entity (table).

biw rstrnt file (type)

file Insight Il restraint file (.rstrnt)

type optional type descriptor, if omitted or the type=0 the restraints
are written in Discover format to the file file.rstrnt, if type=1 the
restraints are written in X-PLOR format into files file.xdcn,
file.xdih and file.xint

biw rstrnt writes restraint file to the disk using the current restraint entities
(tables).

Symbol Dependencies

pksent Current peak table (needed for biw asn and biw pks)
volent Current volume table (needed for biw asn and biw pks)
rpaent Current pattern table (needed for biw ppm)

rreent Current resonance table (needed for biw ppm)

noerst Current NOE-distance restraint table

noeors Current NOE-overlapped distance or ambigous distance restraints
dihrst Current dihedral restraint table

mixrst Current mixing time table

volrst Current NOE-volume restraint table

volors Current NOE-volume overlapped or ambiguous intensity restraints
rchrst Current remote-chiral restraint table

chirst Current chiral restraint table

j3drst Current 3J)-dihedral restraint table

ndirst Current NMR dihedral restraint table

disrst Current distance restraint table

See also

ins — Insight 1I-FELIX inter-process communication
biw — Write database to Insight lle

bld — Build a matrix file

bld file_name dimensions sizel size2 ... sizeN type

file_name name of the matrix to be created-Matrix files are given
the file extension .mat and prefix matpfx

dimensions nhumber of dimensions of the matrix — Up to 6-dimen-
sional matrices can be created

sizel size of the first dimension in points

size2 size of the second dimension in points

sizeN size of the N-th dimension in points

type data type: O=real (default), 1I=complex

overwrite flag y if overwrite needed in case if a file exist with the same
name

overwrite flag

In the following example, a three-dimensional matrix called test.mat, 512 ¥ 256
¥ 32 points, is created.

bld test 3 512 256 32

bld creates a file, or a series of files, to contain an N-dimensional matrix. The
size of the matrix is restricted to powers of two in each dimension, with a min-
imum size of 4 points. If a matrix is defined with a size that is not a power of
two, bld will use the next highest power of two. FELIX matrices exist as direct-
access files on disk, and may exist as multiple files if desired. The maximum
file size of the matrix is defined using the matrix frame size symbol (mframe).
When the actual size of a matrix exceeds mframe megabytes, multiple files will
be created. Once a matrix has been built using bld, you open it using the com-
mand mat to access vectors, planes, and other subspaces.

Symbol dependence

matpfx Matrix Prefix

mframe Matrix Frame Size

See also

mat — Open matrix

bml| — Get molecule name

bml moleculename

moleculename Insight Il molecule name

bml clears up the molecule buffer and sets up the molecule name. This is
needed if the molecule is displayed in Insight II.
Symbol changed

bmlIname Molecule Name

See also

ins — Insight 1I-FELIX inter-process communication
bir — Read database from Insight Il

biw — Write database to Insight Il

bun — Set bundle mode

bun dimension

dimension dimension for bundle mode

bun defines a matrix dimension for bundle mode operation. bun also defines
the value of the reserved symbol vector as the total number of vectors along
the specified dimension in the matrix. For example, for a 512 x 256 x 32 matrix,
you have to perform 512 x 256 operations when transforming the third dimen-
sion, therefore vector is calculated to be 131072 (= 512 times 256). In this exam-
ple, with bun 3, successive vectors are loaded into the work space from the
matrix using the load work space from bundle command (lwb), operated on
(apodized, Fourier transformed, and phased) and stored back to the matrix
using the store work space to bundle command (swb). Following the last Iwb
or swhb access, the bun 0 command is issued to terminate bundle mode access
and to return to discrete access mode.

Bundle mode is very useful for processing all vectors along a single dimension
of a matrix in exactly the same way when the order of processing does not mat-
ter. For example, when processing the third dimension of a 3D experiment, it
does not matter which D3 vector is transformed first, only that it is trans-
formed once during the processing. A matrix transformation performed in
bundle mode is many times faster than the same transformation performed in
discrete vector mode. To exit bundle mode and enter discrete vector mode,
enter bun 0.

At any one time, a matrix must be either in bundle mode or in discrete vector
mode (the default). When in bundle mode, the load command (loa) and store
command (sto) cannot be used to access discrete vectors in the matrix. Like-
wise, when in discrete vector mode, the bundle mode commands lwb and swb
cannot be used.

Symbol changed

vector Number of Vectors in the Entire Bundle

See also
Iwb — Load work space from bundle

swh — Store work space to bundle

by, bye — Exit FELIX

bye

bye ends the session with FELIX and returns you to the operating system. Any
open matrices are closed. If a database is in use, you will be prompted to save
or discard changes for this session.

cal — Macro call

cal $macroname

cal label

cal performs a subroutine call within a macro. The called macro is read into the
macro work space and given a label of $macroname. Control is transferred to
the first line of the called macro, and the macro executes until complete. Con-
trol then returns to the line following the cal command. The called macro
remains in the macro work space until another macro is executed, so repeated
calls will be efficient. cal is only valid in a macro.

Note: The cal command is obsolete and can usually be
replaced by the exr command. It is retained in FELIX solely
for compatibility with existing user macros.

See also

exr — Execute a macro and return
rf — Read FELIX for Windowvs file

cd — Convolution difference window

cd line broadening

line broadening line broadening in Hz

cd is an apodization function, which is really a special case of convolution dif-
ference, namely, the difference between no line broadening and Ibroad. The cd
command uses the global symbol lbroad if no line broadening parameter is
entered. cd multiplies each point in the work space by the function:

1 - e - (line broadening t)

cdf — Conditional define

cdf symbol value

cdf lets you define a symbol to have a value, only on the condition that the
symbol is not yet defined.This is a good way to guarantee that a symbol has a
value without changing the value if it already exists. Since it is an error to use
an undefined symbol, this command can simplify writing robust macros.

cfg — Configure memory

cfg size count

size maximum size for work or buffers (in complex points)
count maximum number of work + buffers

cfg allows you to reserve memory for 1D work spaces. When configuring
memory, a good rule of thumb is to set the 1D work space size to the maximum
size data you plan to work with, and then set the count parameter to the max-
imum number of buffers you need plus one. If you need access to more than
one buffer, simply set count to a larger value (the maximum value is 64). How-
ever, by setting count to a larger value (thus, allocating precious memory to 1D
work space), you may be unable to open a multidimensional matrix (matrices
also need memory). In this case, it may be necessary to reduce the size of the
1D work space and buffer memory with the cfg command.

You may notice that using the cfg command while a matrix is open will close
the matrix before reallocating the 1D workspaces. After configuration, you
must open the matrix again to access it.

Symbol changed

frsize Workspace and Buffer Size

nframe Number Of 1d Buffers

See also

mmp — Display memory map

cgd — Change values in the control panel

cgd

cgd updates symbols on a non-modal (mnu a) control panel.

chi — Calculate minimum chi-square value

chi baseline_width

baseline_width baseline segment width

For the spectrum in the work space, chi calculates a minimum chi-square
value, which is stored in the symbol chi and used by the flt command. This
minimum chi-square value is calculated by fitting the data values within a
window of baseline_width length to a straight line, and calculating the chi-
square value for the fit. The chi-square value is calculated for each full window
of data values, as the window is moved point-by-point along the spectrum.
The smallest chi-square value is stored in chi.

Symbol Changed

chi Minimum Chi-Square Value

cl — Close a data file

cl

cl closes the current data file being accessed by FELIX 2002. A subsequent read
command (re or rn) reads the first record of the data file.

See also
re — Read a file (old format)
rn — Read file (new format)

wr — Write a file (old format)

wn — Write a file (new format)

clr — Clear frame

clr

clr causes the current graphics frame to be erased. The frame will no longer
have any current graphics context or mapping.

Symbol changed:
disply Current Frame Display

cls — Close output file

cls

cls closes the current output file. Unless an output file is open, the put record
command (put) will take no action.

See also

put — Put record

opn — Open output file

cmb — Change symbol on the user interface

cmb symbol value

symbol symbol to change in the user interface (for example, com-
mand name)

value the new text for the symbol

This command changes the text in the FELIX graphical user interface (GUI),
where an item was defined via the symbol.

cmd — List commands

cmd match string

match string optional string, which may contain a wild card (*)

This command causes FELIX to list all commands. If a match string is entered,
only commands that match the string will be listed.

cmx — Close matrix file(s)

cmx

cmx closes all open matrix files. The matrix buffer is also de-allocated.

Symbol changed
matfil Current Matrix File

dimen Number of Matrix Dimensions

See also
bld — Build a matrix file

mat — Open matrix

cnj — Complex conjugate

cnj

cnj negates the imaginary part of the data in the workspace. This command
will reflect the spectrum about zero frequency if it is performed before the ft.
Symbol dependence:

datsiz Number of Data Points

datype Data Type

cnv — Time-domain convolution

cnv window_type window_size extrapolation

window_type convolution function to convolve with the data:
O=sinebell, 1=gaussian
window_size number of points used to define the convolution
function
extrapolation type of extrapolation used between point one and
point
window_size and between point (datsiz — window _
size) and point
datsiz:
O=average slope at tails (original method)
1=linear prediction of tails (new method)

cnv is used to eliminate huge solvent lines and the effect of the tails of these

lines on less intense signals. cnv convolves the FID with the selected window
of the specified width, then subtracts the result from the original FID. Lines are
removed only within a small range of zero frequency, and the effective width
of the range is dependent on the window size used, that is, the wider the win-

dow, the narrower the width of the range. Convolution of finite length data
sets necessarily begins at the point window_size and ends at the point (datsiz
— window_size). Therefore, another method for estimating the solvent signal
must be used to for the first and last window_size points. The extrapolation
parameter allows you to select either a linear extrapolation, which is fast and
usually sufficient, or a linear prediction estimation, which is slow but often
more accurate. The linear prediction can produce undesirable results under
certain conditions; for example, when the window_size is narrow, the con-
volved data possesses higher frequency components that the linear prediction
subsequently attempts to extrapolate. For extrapolation of one, the linear pre-
diction parameters are points = 32, coefficients = 16, and peaks = 8. This technique
was developed by Dominique Marion.

Symbol dependence
datsiz Number of Data Points

datype Data Type

See also
Ipx — General linear prediction
Ipf — Linear predict first points

Ipl — Linear predict last points

com — Execute FELIX commands in macros

com

com puts you in touch with the command interpreter of FELIX while a macro
is running. This allows you to input a FELIX command while a macro is run-
ning. The command is then executed within the macro. The string must be a
valid FELIX command line. com is only valid in a macro.

cp — Contour plot

cp

cp draws a contour plot of the current plot region, defined by the matrix limits
command (lim) on the current graphics device. The lowest contour level is
determined by the product of the reserved symbols level and mscale.

The contouring algorithm can perform spline interpolation (contyp=1)
between the real points, making the appearance of the plot smoother. While
this improves the appearance, the speed of the plotting decreases.

The default rendering mode erases the screen before each display; this action
may be disabled by setting the reserved symbol erase to 1. Video buffering
may be enabled by setting the reserved symbol animat to 1. The size and
graphics attributes of the region plotted by the cp command are affected by a
number of other reserved symbols.

Symbol dependence:

animat Specifies Video-Buffering

clmode Selects Linear or Geometric Contour Spacing
conmod Modifies Contour Level

contyp Interpolation Type

cycle Sets Color Cycle

drwbox Draws Box Around Plot

drwpks Draws Peaks Switch

erase Disables(0)/Enables(1) Automatic Screen Erasing
grid Specifies Superimposed Grid Lines

level First Contour Level

mscale Matrix Scale Factor

nlevel Number of Contour Levels

posneg Enables Plotting of Negative Contour Levels
projct Selects Dimensionality of Display

pennum First Color

rowinc Point Skipping Factor for 3D Displays
xpklbl Label Peaks Switch

Symbol changed
disply Current Display Type

See also

ip — Intensity plot

np — Null plot

sp — Stack plot

ovc — Overlay contour plot
pla — Redisplay 3D object

rmx — Reference matrix

cpl — Real to complex

cpl

cpl turns a real vector into a complex vector with an imaginary part of zero.
This command works only on data stored in the current workspace.
Symbol dependence

datsiz Number of Data Points

datype Data Type

Symbol changed
datype Data Type

See also

red — Reduce complex to real

csh — Circular signed shift

csh nl n2 scale factor

nl first point value
n2 second point value
scale scaling factor for shift

csh shifts the data in the work space left or right the number of points specified
by the value [(n1-n2)*scale]. Negative shifts move to the left, positive shifts
move to the right. Points shifted off the leading edge of the spectrum are "cir-
cular shifted"” to the trailing edge. The csh command is used for tilting spectra
where the scale is usually set to the digital resolution ratio of the 1 and 2
dimensions.

Symbol dependence

datsiz Number of Data Points

datype Data Type

See also

shl — Shift left

ssh — Signed shift

shr — Shift right

csr — Circular shift right

csl — Circular shift left

csl — Circular shift left

csl points

points number of points to shift data in work space

csl shifts the data in the work space left by the number of points specified.
Points shifted off the left edge of the spectrum are circular shifted back onto
the right edge of the spectrum.

Symbol dependence
datsiz Number of Data Points

datype Data Type

See also

shl — Shift left

ssh — Signed shift

shr — Shift right

csr — Circular shift right

csl — Circular shift left

csp — Cubic spline baseline correction

csp

csp performs a cubic spline baseline correction on the contents of the work-
space according to the baseline points defined in the baseline entity basent. The
baseline points may be set automatically using the automatic selection of base-
line points command (abq). csp uses the value of the interval width symbol
(iwidth) to minimize the effects of noise on the correction by averaging the
points within the interval about each baseline point plus and minus the value
of iwidth.

A cubic spline will correct each baseline point to exactly zero. This can present
a problem if csp is used to correct the first dimension of a multidimensional
transform. Since each defined baseline point will be corrected to zero, the
transform along the next dimension will see all zeroes when the vector passing
through the baseline point is loaded. The FFT of all zeroes is all zeroes, and if
a DC offset is present in the data, this will appear as ridges or valleys in the
transformed data. Accelrys recommends using pol for baseline correction dur-
ing transforms.

Symbol dependence
datsiz Number of Data Points

datype Data Type
iwidth Interval Width

See also

abg — Automatic selection of baseline points
fIf — FaceL.ift baseline correction

pol — Polynomial baseline correction

bas — Baseline points manipulation

csr — Circular shift right

Csr points

points number of points to shift data in work space

csr shifts the data in the work space right by the number of points specified.
Points shifted off the right edge of the spectrum are circular shifted back onto
the left edge of the spectrum.

Symbol dependence

datsiz Number of Data Points

datype Data Type

See also

shl — Shift left

ssh — Signed shift

shr — Shift right

csr — Circular shift right

csl — Circular shift left

cur — Cursor control

cur wait_mode map behavior exit_style

cur allows you to control the cursor location and appearance, wait for mouse
or keyboard events, and obtain positional information from the graphics dis-

play.
The general outline of the behavior of the cur command is:

1. Change the cursor to a particular style, and optionally preposition it at a
specified position on the graphics display.

2. Wait for zero, one, or two mouse button or keyboard events.

3. Return positional (x, y location) and event (key or mouse button) informa-
tion from the cursor into reserved symbols for future use.

4. Change the cursor to a particular style on exit.

There are many variations of the cur command, with the specific behavior
determined by the parameter values. General descriptions of each parameter
are given below:

parameter setting description

wait_mode The number of mouse button or keystroke
events cur waits for before returning

map

Returnimmediately. Thismode lets you set or
get the current cursor position and
change the cursor style without waiting for
any event. The new cursor position is
returned in xOpnt and yOpnt.

Wait for a single mouse button or keyboard
key press event. This mode allows you to
set the current cursor position, change the
cursor style, and then wait for you to move
the cursor to any position on the graphics
display using the mouse. Mode 1 returns
when a mouse button or keyboard key is
pressed. The selected position of the cur-
sor is returned in xOpnt and yOpnt, and the
ASCIl code of the key pressed is returned
in

keyhit.

Wait for a mouse press-drag-release series of
events. This mode facilitates operations
that involve two different cursor positions.
In general, the mouse button press selects
the first cursor position and the release
selects the second cursor position. When
the cursor style is a box, these two positions
represent the lower left and upper right
corners. When the cursor style is a line seg-
ment, the two positions are the endpoints
of the line segment. The two cursor posi-
tions are returned in xOpnt, yOpnt, x1pnt,
and ylpnt

Selects the units of measure in which posi-
tions on the graphics display are to be
specified. Any form of the cur command
will return positional information in the units
chosen. Likewise, you can set the cursor
position in any units. Depending on the
application and the nature of the graph-
ics display, one type of units in the follow-
ing list will be most appropriate.

Screen pixels. These are defined relative to
the lower left corner of the graphics win-
dow occupied by FELIX, and have no rela-
tion to the current frame display.

Data points. These are defined based on
the plot in the current frame. For 1D plots,
x will be data points and y will be between
zero and one corresponding to the small-
est and biggest intensity, respectively. For
2D plots, x and y will both be data point
units.

Inches. Defined relative to the lower left cor-
ner of the current frame.

Normalized coordinates. x and y positions
are both returned in a range from zero to
one. The reserved symbol ndctyp specifies
the interpretation: ndctyp=0, defined rela-
tive to plot in current frame; ndctyp=1,
defined relative to current frame.

behavior

exit_style

= O

w

o ~Noa AN

Cursor behaviors:

Mode

behavior

O b W N O 0N

Axis units. Defined relative to the plot in the
current frame. This mapping mode will
return x and y position in units correspond-
ing to the plot in the current frame. For a
1D plot, the x units correspond to the x-axis
units and the y units correspond to the
actual data values plotted. For a 2D plot
referenced in ppm, both x and y units will
be in ppm units

Varies depending on each mode. See the
table below.

Selects the style in which to leave the cursor
when the cur command completes. Inde-
pendent of wait_ mode and behavior, you
can make the cursor appear in one of sev-
eral styles. The cursor will remain in the
selected style until the next cursor opera-
tion occurs.

turn cursor off (invisible)

enable default system cursor (usually an
arrow)

large crosshair cursor

busy cursor (an hourglass or clock face)
small crosshair cursor

vertical half crosshair

horizontal half crosshair

action

get current position

place cursor at position (xOpnt, yOpnt)
clear stationary crosshair at (xOpnt, yOpnt)
draw stationary crosshair at (xOpnt, yOpnt)
enable system cursor

pre-positioned system cursor

crosshair cursor

pre-positioned crosshair cursor

multiple crosshairs

pre-positioned multiple cross-hairs
vertical half crosshair

horizontal half crosshair

full rubber box

pre-positioned box, moves with fixed size
pre-positioned box, resize fixed upper left
rubber line

pre-positioned box, resize with fixed center

* exit_style
is not
used
with sta-
tionary
cursor

** multi-
ple cur-
sors
always
return
axis units

Symbol dependence

ndctyp Normalized Coordinate Type
x0pnt First X Position

yOpnt First Y Position

x1pnt Second X Position

ylpnt Second Y Position

Symbol changed

keyhit Cursor Key Event Code
x0pnt First X Position

yOpnt First Y Position

x1pnt Second X Position

ylpnt Second Y Position

See also

ena — Enable multiple cursors

dba — Database facility

dba object operation data

dba provides access to a database that can be used to store spectral features
and relational information. The database is a central part of FELIX, and Chap-
ter 6, The Database and Tables, contains detailed information on all aspects of its
use.

dbc — Oversampled baseline correction

dbc decimation_factor fraction

decimation factor oversampled decimation factor

fraction fraction of data used to compute baseline offset;
default = 0.25 (last 1/4 of FID)

dbc removes a DC offset of a digitally oversampled Bruker FID baseline (DC
offset creates a spike at the carrier frequency) by subtracting the offset from
work. The dbc command works properly only if the data at the end of the FID
is a baseline. Adequate DC offset correction is usually obtained by using the
default fraction value of 0.25.

Symbol dependence

datsiz Number of Data Points

dbl — Double data size

dbl

dbl doubles the size of the data in the workspace by performing a linear inter-
polation between the existing data points.

Symbol dependence
datsiz Number of Data Points

datype Data Type

Symbol changed

datsiz Number of Data Points

See also

hav — Halve data size

def — Define a symbol

def name value

name name for the defined symbol
value value associated with the symbol name

def is used to explicitly define values for specified symbols. These defined
symbols can then be used in macros in the form of &symbol. When the &symbol
notation is encountered within a macro, the symbol’s value replaces the sym-
bol’s name before command execution.

Here is an example:

def count 10

In this example, the symbol count is given an explicit number value of 10. Sub-
sequently, if you run a macro containing the following command:

for rows 1 &count

the explicit number value of count replaces the symbol. In this example, the for
loop increments 10 times as defined by the value of the symbol count.

There are two classes of symbols within FELIX: reserved symbols and user sym-
bols. Reserved symbols have pre-defined meanings in FELIX, whereas user
symbols have no pre-defined names or meanings. For a complete list of the
reserved symbols and their meanings, see Appendix B, Symbol Reference.
Symbol changed

Only the symbol named in the def command

See also

lis — List symbol table

get — Get a symbol value

eva — Evaluate expression and assign to symbol

pur — Purge symbol table

der — Derivative

der

der takes the derivative of the data in the workspace and pushes it onto the
current buffer stack. The workspace is left unchanged.

Symbol changed
stack Stack Depth

See also

int — Integrall

dft — Fast Fourier transform of digitally oversampled

data

dft (decimation_factor version)

dft performs a complex fast Fourier transform on a digitally oversampled
Bruker FID in the work. It uses the optional decimation_factor and version vari-
ables to use the correct algorithm. Alternatively, you can omit these two vari-
ables but you must set the decim and dspfvs symbols. The symbols correspond
to the BRUKER parameters DECIM and DSPFVS, respectively.

The currently supported versions (dspfvs) are 10, 11, and 12. If there will be a
newer version then you can enter the 21 phase parameters into FELIX through
an ASCII file, which is then read by FELIX when it executes the dft command.
The file is located in the

Accelrys/Felix 2002/macros/mac
directory and should be called according to the version number:
bphase.dspfvs

The dft command executes more quickly if the size of the data in the work-
space is a power of two, but it will transform data of any size.

If the symbol gibbs is set to 1, the first point of the workspace is divided by
two before transformation to properly weight the time period this sample rep-
resent. If gibbs is set to zero, the division is not performed.

Symbol dependence

datsiz Number of Data Points

decim Decimation factor (from BRUKER DECIM variable in acqus)

dspfvs Oversampling version (from BRUKER DSPFVS variable in acqus)
gibbs Gibbs Filter Switch

See also
rft — Real Fourier transform
bft — Bruker-Fourier transform

ift — Inverse Fourier transform

dir — Current working directory

dir get curdir

dir set curdir

dir get returns the current working directory to symbol curdir. If
curdir is omitted, it displays the current working directory on the status bar.

dir set sets the current working directory as a curdir (a valid folder name
expected, otherwise it is ignored). Once the current working directory has
been changed, any paths relative to “.\”’ is changed.

dr — Draw work space and stack

dr

dr draws the contents of the workspace (default) as well as the number of buff-
ers indicated by the stack depth symbol stack.

Symbol dependence
absint Absolute Intensity
animat Enable Double Buffering
axtype Axis Type

center Center Zero Switch
cycle Color Cycle

drwbox Draw Box Around Plot
drwclv Draw Contour Levels
drwpks Show Picked Peaks
dspmod Display Mode

first First Point

last Last Point

linpts Line/Points Switch
ovrlap Plot Overlap

pennum Starting Color

pltann Plot Annotations

scale Scale Factor

segint Show Integral

stack Stack Depth

Symbol changed

smalpt Smallest Data Value
bigpt Largest Data Value
disply Current Display Type

See also

exp — Expanded display
ful — Full display

ip — Intensity plot

drb — Display brother cross peaks

drb peaks color
peaks cross peak entity
color color to draw brother connectivities

drb draws lines that connect cross peaks having the same parent. drb uses the
parent pointer element of cross peaks to determine whether two cross peaks

are brothers. The peaks parameter can specify either a DBA entity name or a
DBA list number.

See also
drx — Display cross peaks

xpl — Make a list of peaks

drx — Display cross peaks

drx peaks color (matfil) (overlaycolor)

peaks cross peak entity
matfil current matrix file
color color to draw cross peaks

drx displays cross peaks in the database that are in the current plot region on
the current display. If the display is 2D, 2D cross peaks will be displayed. In 3D
mode, cross peaks will be displayed as 3D objects. The peak entity can specify
either a DBA list number or DBA entity name.

If the color is defined as -1, then the peaks in a 2D plane of a 3D or 4D matrix
are colored depending on the relative positions to the current plane. Defining
color as -2 colors peaks based on assignment states, and -3 colors the peak
boxes based on whether or not they belong to prototype patterns within
Assign. If color is defined as -4, then the peak set of a different matrix (matfil)
will be displayed on the current matrix with color = overlaycolor.

Example:
drx &pksent 4 (using entity name)
drx L2 6 (using DBA list number)
Example:

drx pksent -4 matfil color (Overlays pksent referenced by matfil on
current matrix using color color)

The relative dimensions (i.e., what dimension of the peak set should be dis-
played on what dimension of the spectrum) is defined with the repek1, repek?2,
... user symbols.

Example:

To display an HSQC peak set (D1 = HN, D2 = N-15) on a HSQC-NOESY spec-
trum (D1 = HN, D2 = H-1, D3 = N-15) set the following variables:

repekl =1

repek2 3

repek3 2

Symbol dependence

xpksym Peak Symbol Switch

xpklbl Label Peaks Switch

dst, exd, don, dof — Distributed processing commands

A macro can be distributed through several machines by creating a top level
macro which contains a command(s) directing FELIX to use the given
machines for distributed processing, preferably at the very beginning of the
macro.For example:

dst compname number of_ processors first_bundle number of_
bundles tmp_dir

compname computer (host) name on the network, pref-
erably full name

number_of _processors number of processors to run the job on —
currently only valid for multiprocessor SGI

computers

first_bundle first bundle to process on the given proces-
sor

number_of_bundles number of bundles to process on the given
processor

tmp_dir directory where the temporary files get writ-

ten — needs to be seen from the comp-
name computer and from the current
computer

Note that the matrix to be processed should be seen from the computers where
the distributed processing will be happening (through NFS).

This command can be run on multiprocessor SGI’s in distributed parallel
mode; that is, each processor runs its own copy of FELIX.This top level com-
mand calls the macro to distribute using the command:

exd macro argl ... argN

This executes a macro in distributed mode and then returns to the current
macro, continuing with the line immediately following this exd command. The
called macro is deleted once it completes, and the current calling macro is not
disturbed.

The macro for distributed processing should contain a command from which
to start the distributed processing:

don

The macro after the don command should contain processing instructions
using the bundle mode.

At the very end of the macro before the return statement (ret and end) there
should be a command to finish the distributed processing:

dof

Executing this macro results in distributing the bundles along that dimension
through the machines defined by the dst command, while the original FELIX
process returns to the calling macro or prompt. Certainly you can set the cur-
rent machine as one of the target machines or even as the only target machine

(which is effectively the background processing), but that is a separate FELIX
process.

Caveats:

4 The original process should not alter the matrix until the distributed pro-
cessing is done. Thus, the macro should be carefully written not to start for
example, a second dimension processing, until the first is finished.

4 There should be no ex (exr, cal) command within the distributed macro.

4 The temporary directories should be accessible from the computer where
the original FELIX runs (for example, Is should work).

4 As with all distributed programs, higher processing/disk 1/0 ratio equals
better efficiency; do not use this command for only Fourier transforming a
small data set, but rather use it for a big 3D or 4D processing with LP.

4 This processing can be used only after the data in the FELIX matrix format;
that is, generally it is not applicable to the first dimension processing,
unless it is imported into a FELIX matrix format before starting the trans-
formation.

4 Afile is written to the temporary directory at the end of the processing
called felix_out.

eif — Macro end of block if

eif defines the end of a block-form macro if statement. See the if documenta-
tion for a complete description of the if/else syntax.

els — Macro else block

els defines the beginning of the else portion of an if/else statement. See the if
documentation for a complete description of the if/else syntax.

em — Exponential

multiply

em line broadening

line broadening line broadening in Hz (optional)

em multiplies the data in the work space by an exponential window. This
apodization function is used to reduce noise at the expense of spectral resolu-
tion. The parameter line broadening may be entered with this command or, if
no line broadening parameter is specified, the current value of the line broad-
ening symbol (lbroad) is used. The swidth parameter must be set correctly; oth-
erwise, the window function will be improper.

Symbol dependence:
datsiz Number of Data Points
datype Data Type

Ibroad Line Broadening
swidth Spectral Width in Hz

ena — Enable multiple cursors

ena frame on/off

frame graphics frame number

on/off cursor enable state for specified frame: O=disabled,
l=enabled

enaenables a correlated cursor in a single frame, based on the current graphics
context from the current plot. If multiple frames have correlated cursors
enabled, the cur command can be used to enable correlated cursors that appear
in all enabled frames in corresponding axis unit positions. Any new graphics
display in a frame with a correlated cursor enabled will automatically disable
the correlated cursor since the display context changed.

See also

cur — Cursor controll

end — Macro end statement

end terminates macro execution and returns to command mode. end is only
valid in macros.

env — Get a system environment variable

env env_var symbol

env_var the name of one environment variable
symbol symbol to receive current value of environment variable

env allows the user to read the system environment variables from inside
FELIX. If env_var exists in the current process’s environment, then symbol
receives the value of that environment variable. If the environment variable
does not exist, the symbol is left unchanged.

err — Macro branch on error condition

err label macro_label

err macro macro_file_name

macro_label target label in macro
macro_file_name name of macro to be executed

err defines an error trap response for a macro. Once an err command has been
executed by a macro, any subsequent error condition will cause a branch to the
specified macro label, or execution of the specified macro. The err destination
is valid for the duration of the macro. err is only valid in macros.

esc — Test for escape key event

esc symbol

symbol symbol to receive escape event status: 0=escape key has
not been pressed, 1=escape key has been pressed

The esc command lets you watch for an interrupt request inside a macro.
When placed in a macro for loop esc can be used as a way to exit the processing
macro before normal completion.

Caution: Be warned that there are several commands that
also intercept escape key events, and may deal with the
escape event before the esc command is encountered during
macro execution. These commands include cp, ip, cur, obj,
and other commands that enable a cursor. These commands
will update the symbol keyhit to the value <Esc> when they
trap an escape event.

eva — Evaluate expression and assign to symbol

eva symbol_name expression num_of_characters

symbol_name target symbol for expression value

expression arithmetic expression in parentheses

num_of _characters number of characters used to define the sym-
bol name

eva evaluates an arithmetic expression and places the formatted result into the
value field of the symbol. The parameter expression must be enclosed in
parentheses, for example:

eva count (&row*5)

In this example, the symbol count is given a value that is equal to five times the
current value of the symbol row. The capabilities of the eva command and the
syntax of expressions are described explicitly in Appendix B, Symbol Reference.

Note: There are no spaces allowed between the parentheses.

See also
def — Define a symbol
get — Get a symbol value

cdf — Conditional define

ex — Execute a macro

ex macro argl ... argN

fle_name macro to execute (optional — executes current macro)

ex causes control of FELIX to change from interactive to macro execution
mode. During execution of a macro, FELIX no longer accepts input from the
user keyboard. Upon termination of macro execution, FELIX returns to the
user and interactive control is returned to the keyboard (the > prompt appears
on the screen and signifies the end of macro execution). Macros may also be
executed with the file_name parameter.

Within a macro, the ex command causes another macro to be executed. All
traces of the first macro executed are removed from memory. To call a second
(or third) macro as a subroutine and return to the current macro, the macro call
command (cal $macro_name) or execute and return command (exr macro) must
be used within the parent macro. For a full discussion of macros, see Chapter
4, Macros.

Arguments may be passed to the macro. See Passing arguments to macros for
more information.
Symbol changed

macfil Current Macro File

See also

cal — Macro call

exm — Execute Multiple Macros
exr — Execute a macro and return

go — Macro unconditional branch

exc — Exchange real and imaginary

exc

exc causes the real and the imaginary parts of the work space to be exchanged.
This command is most often used when you must merge the real component

of areal T1 FID with the real component of an imaginary T1 FID (i.e., hyper-
complex data acquisition. See States 1983).

Symbol dependence
datsiz Number of Data Points

datype Data Type

exm — Execute Multiple Macros

exm macro argl ... argN

exm executes a macro while preserving the existing mscro memory and con-
text. exm may be invoked from anywhere in FELIX : the command line, the
menu interface, or a macro. The executed macro is deleted after it completes
the job.

Arguments may be passed to the macro. See Passing arguments to macros for
more information.

See also

exr — Execute a macro and return

ex — Execute a macro

exp — Expanded display

exp

exp generates an expanded display of the workspace using the current 1D plot
limits (first, last).

Symbol dependence

first First Data Point

last Last Data Point

See also
ful — Full display
dr — Draw work space and stack

ip — Intensity plot

exr — Execute a macro and return

exr macro argl ... argN

Execute a macro and then return to the current macro, continuing with the line
immediately following this exr command. The called macro is deleted after it
completes, and the current calling macro is not disturbed. Contrast this with
ex and cal.

Arguments may be passed to the macro. See “Passing arguments to macros”
in Chapter 4, Macros for more information.

See also

ex — Execute a macro

cal — Macro call

ret — Macro subroutine return

fit — Fit 1D peaks

fit
fit invokes a line fitting subsystem of FELIX for optimizing peak parameters

to yield a least squares fit to a spectrum. Peaks may be pre-picked using pic or
created within fit. Single peaks may be added, removed, or manually edited.

Three independent optimization algorithms are provided within fit. These are
simplex, quasi-Newton, and simulated annealing. You can select an algorithm
and determine the set of peak parameters to be optimized. If you save the fit-
ted peaks, the 1D peaks entity is updated with the new fitted values.

fit peak_entity volume_entity slot_number optimize_center optimize_
widths optimize_heights

This command fits ND peaks in the temporary entities peak_entity and volume_
entity using quasi-Newton minimization of the requested parameters
(optimize_center= 1, optimize_widths = 1, and/or optimize_heights = 1).

Symbol dependence:

datsiz Number of Data Points

picent 1D Peaks Entity

See also

pic — Peak pick and label

ssp — Synthesize spectrum from peak list

flf — Facelift baseline correction

fif baseline filter_width num_std_dev smooth_pnts buff no
fif correct filter_width num_std_dev smooth_pnts

flf smooth filter_width buff no

fIf provides functions for baseline correction of the data in the work space,
using the FaceLift algorithm published by Chylla, R. A. & Markley, J. L. (J.
Mag. Reson. Series B 102, 148-154, 1993).

fIf baseline performs FaceL ift baseline modeling on the data in the workspace.
It identifies the baseline points and generates a model baseline. The generated
baseline either overwrites the workspace (if buff_nois 0) or is stored in a buffer
while the workspace remains unchanged (if buff_no is greater than 0).

fIf correct performs FaceLift baseline correction on the data in the workspace.
It is very similar to subcommanded flf bas, except that the baseline is directly
subtracted from the original spectrum in the workspace.

fIf smooth performs a (2 * filter_width + 1)-point binomial filtering on the data
in the workspace. The smoothed data are stored in buffer buff_no.

filter_width Half-width of the smoothing data window over
which data points are sampled. Recommended
range is 32-64 data points (powers of 2 are not nec-
essary).

num_std_dev Used to determine a threshold standard deviation,
above which any pointis considered to be a signal
point. Recommended range is 2.5-3.0.

smooth_pnts Half-width of the smoothing data window over the
resulting baseline. Normally the same as filter_
width, but can be changed.

buff_no Number of the work buffer that stores the generated
baseline. Default or 0 means to overwrite the work-
space.

See also

abl — Automatic baseline flattening

abg — Automatic selection of baseline points
bas — Baseline points manipulation

csp — Cubic spline baseline correction

flt — FLATT baseline flattening

smo — Binomial smooth

fli— Frequency list manipulation

The fli command manipulates frequency lists. These lists provide a succinct
method of storing chemical shift values that are believed to arise from a single

residue. Chemical shift values may be added, deleted, filtered, or displayed
from the frequency lists by using these commands. After examining a particu-
lar residue, the frequency lists associated with that residue may be written to
a database frequency list entity for future use. Conversely, one can read chem-
ical shift values into a frequency list from a database frequency list entity.
FELIX provides eight frequency lists and allows storage of up to 64 chemical
shift values in each list.

fli clear list

The clear subcommand removes all values from the specified frequency list.

fli add list freq freq ...

The add subcommand appends chemical shift values to the frequency list. Any
number of chemical shift values may be specified on the command line
although each frequency list stores a maximum of 64 values.

fli list list

The list subcommand lists (on the screen) the chemical shift values stored in
the specified frequency list.

fli delete list lo_freq hi_freq

The delete subcommand removes chemical shift values that are greater or
equal to lo_freq, and less than or equal to hi_freq, from the specified frequency
list.

fli union listl list2 list3

The union subcommand combines frequency lists one and two into frequency
list three. Unique chemical shift values are transferred to frequency list three
from either of the source lists. In the case of two equal frequencies in each
source list, union adds just one instance of the chemical shift value to fre-
quency list three.

fli draw D1list D1color D2list D2color obj#

The draw and object subcommands store graphical representations of fre-
guency lists one and two in the specified object. The chemical shift values in
frequency list one appear as vertical lines of the requested color and the values
in list two appear as horizontal lines of the requested color. The obj# parameter
determines the destination for the drawn frequency lists. When obj# is positive,
the frequency lines are placed into a graphical object for later display. When
obj# is zero, the frequency lines are drawn immediately on the current 1D or
2D plot. If the D1color or D2color is 0 then it erases the displayed frequencies.
If the D1color or D2color is -1 then each frequency in the list will have a different
color.

fli object D1list D1color D2list D2color obj#

See draw (dr — Draw work space and stack).

fli tile D1list D2list tile_width tile_entity

The tile subcommand uses the chemical shift values in frequency lists one and
two, as well as the tile_width factor, to create a tile entity with the name tile_
entity.

Symbol dependence

The fli draw D1list D1color D2list D2color obj# command affects the following
user symbols:

flid1 Current frequency list number on D1, set to the value of D1list.
flid2 Current frequency list number on D2, set to the value of D2list.
flicoll Color to display frequencies on D1, set to D1color.

flicol2 Color to display frequencies on D2, set to D2color.

See also

cp — Contour plot
ip — Intensity plot
til — Tile plot

fli read list freq_entity

The read subcommand copies the chemical shift values in the database fre-
guency list entity freq_entity to the specified frequency list.

fli write list freq_entity

The write subcommand copies the chemical shift values in the specified fre-
guency list to the database frequency entity freq_entity.

fli move listl list2

The move subcommand copies the chemical shift values in listl to list2.

fli equiv list resolution

The equiv subcommand removes nearly equal chemical shift values from a

specified frequency list and replaces the two values with their average. Two
chemical shift values are considered to be nearly equivalent when the differ-
ence between their values is less than resolution.

fli xpks list peaks dimen resolution

The xpeaks subcommand creates a frequency list from a list or entity of cross
peaks. A frequency is made at each center along the given dimension, then all
frequencies closer than resolution are combined.

fli peak list peaks resolution

The peak subcommand creates a frequency list from a list or entity of 1D
peaks. A frequency is made at each center, then all frequencies closer than res-
olution are combined.

fli an list freq name

The an subcommand appends chemical shift value and names to the frequency
list one by one. Each frequency list stores a maximum of 64 values and names.

fli rc list clipboard_entity

The rc subcommand copies the chemical shift values and names in the assign
database frequency clipboard entity clipboard_entity to the specified frequency
list.

fli rn list pattern_entity pattern_# spectrum_id

The rn subcommand copies the chemical shift values and names in the assign
database pattern entity pattern_entity to the specified frequency list. You have
to specify which pattern’s (pattern_#) chemical shifts to copy and whether to
use the generic shifts (spectrum_id = 0) or spectrum specific shifts (in that case
the spectrum_id should reflect that experiment’s number).

fli rp list protopattern_entity proto_#

The rp subcommand copies the chemical shift values and names in the assign
database protopattern entity protopattern_entity to the specified frequency list.
You have to specify which protopattern to copy (proto_#).

fli collect list pattern_entity spectrum_id centrum delta

The collect subcommand collects frequencies from the assign database pattern
entity into the specified frequency list. All frequencies will be copied which
generic (spectrum_id = 0) or spectrum specific shifts (spectrum_id =n) are within
delta ppm from the specified centrum position.

fli sort list order

The sort subcommand will sort the content of the specified frequency list in
descending (order=0) or ascending order (order=1) by the chemical shifts.

flp — Low-point fold of work space

flp

flp performs a low-point fold on the data in the workspace by saving the lower
value of the two symmetrical points (for data that has a size of 1024 points,
point1is compared with point 1024; point 2 with point 1023; point 3 with point
1022; etc.). The command flp is similar to the fold data command (fol) and can
be used if you know that the workspace contains symmetric data. By perform-
ing a low-point fold on the workspace, the size is decreased by a factor of two.
This command is convenient for non-diagonal symmetrization of multidimen-
sional spectra.

Symbol dependence

datsiz Number of Data Points

datype Data Type

Symbol changed

datsiz Number of Data Points

See also
fol — Fold work space in half

unf — Unfold work

flt — FLATT baseline flattening

flt baseline_width chimin number_of_points tau

baseline_width baseline segment width
chimin minimum chi-square value
number_of_points number of points to correct
tau baseline cutoff factor

This command performs FLATT baseline correction on the data in the work
space. flt automatically identifies the segments of data in the work space that
constitute the baseline. The command fits a Fourier synthesized curve to the
baseline points using a linear-least-squares fit, based on a singular value
decomposition, and subtracts the synthesized curve from the data in the work
space. The FLATT baseline correction was introduced by Guntert and
Waithrich in 1992 (please see the FELIX User Guide for the full reference).

flt uses the baseline_width, chimin, and tau parameters to find baseline segments
in the spectrum. The baseline_width parameter determines the width of a slid-
ing window that flt uses to identify baseline segments. flt moves the window
point-by-point along the length of the spectrum, fitting the spectral data points
within the window to a straight line, calculating the chi square value of the fit,
and storing the chi-square value in a vector. Next, a narrower window of width
2/3basline_width is moved point-by-point along the vector of chi-square val-
ues. If the smallest chi-square value within the window is less than the product
of the parameters chimin and tau, flt considers the point in the center of the
window to be a baseline point. The number_of _points parameter determines
the number of terms used in the Fourier synthesis.

Symbol dependence

chi Minimum Chi-square Value

See also
chi — Calculate minimum chi-square value

flf — FaceLift baseline correction

fol — Fold work space in half

fol

fol performs a linear symmetrization of the 1D workspace by co-adding the
first and last points together; second and next-to-last points; etc., until a "new"
symmetrized, 1D spectrum is created. By performing a co-addition fold on the
workspace, the size of it is decreased by a factor of two. This command is con-
venient for non-diagonal symmetrizations of multidimensional spectra.

Symbol dependence

datsiz Number of Data Points

datype Data Type

Symbol changed

datsiz Number of Data Points

See also

flp — Low-point fold of work space

unf — Unfold work

for — Loop for macros

for symbol start end step

symbol name of the for loop counter

start beginning value of the for loop counter
end ending value of the for loop counter
step increment for loop counter (may be negative)

for is the FELIX macro loop operator, which acts in a manner very similar to
the BASIC computer language FOR command. The for command may only be
used in macros. Within a macro, the for command allows all of the commands
between itself and the macro command nex to be executed, incrementing the
value of symbol by step each cycle through the loop. The for command is mainly
used to loop through rows and columns of matrices while performing multi-
dimensional transforms. Like the BASIC FOR command, FELIX for loops may
be nested within each other as long as each for loop has a nex command defin-
ing the end of the loop.

fpo — Pop FELIX window

fpo

With this command, you can pop the FELIX window on top of any window
residing in the same position on the screen. This command is useful if you use

FELIX with Insight 11, and wish to bring FELIX into the foreground from
within a macro.

fpu — Push FELIX window

fpu

With this command you can push the FELIX window to the background, i.e.,
behind any window residing in the same position on the screen. This is useful
if you are using FELIX with Insight Il, and want to push FELIX into the back-
ground from within a macro.

fra — Manipulate graphics frames

fra op parameters

fra allows you to define a number of graphics frames in the FELIX window
and to direct graphics to these frames. Each frame maintains its own complete
graphics context, which includes the 1D workspaces, all user and reserved
symbols, and matrix. Only one frame is current at a time. For example, display-
ing the workspace in the current frame modifies only the graphics context for
the current frame. All other frames will maintain their original graphics con-
text.

The frame operators and their functions are as follows:
fra open X_origin Y_origin X_size Y_size

fra open -1

fra open opens a new frame. Origins and sizes are given in pixels. A newly
opened frame becomes the current frame and inherits the graphics context of
the previously current frame. Specifying the x_origin as -1 opens a default size
and position frame.

fra zero

fra zero closes all frames and re-initializes the frame manager.

fra front frame#

fra front pops any frame to the front of all other frames. The specified frame
also becomes the current frame. Specifying a frame# of -1 allows the desired
frame to be identified by clicking anywhere within the frame.

fra close

fra close closes the current frame. The graphics context of the closed frame is
discarded. The next-most-current frame then becomes the current frame.

fra move X_origin Y_origin

fra move moves the current frame to a new position with its origin at the posi-
tion specified by the pixel parameters x_origin and y_origin. Specifying an x_
origin of -1 allows you to move the frame using the mouse.

fra resize X_origin Y_origin X_size Y_size

fra resize allows the current frame to be re-sized and re-positioned anywhere
within the FELIX window. The origin and sizes are in pixel units. Specifying
the x_origin as -1 allows manual re-sizing of the current frame using the mouse.

fra verify frame# symbol

fra verify allows you to verify or inquire about the existence of a frame by
number. If the specified frame exists, the value 1 is stored in symbol. A value of
0 is stored in symbol if the frame does not exist.

fra header frame# header text

fra header allows you to label the frame header with a text string. The text
should be enclosed within single quotes if you wish to preserve upper case
characters and blanks.

fra who symbol symbol2 symbol3

frawho allows you to inquire which frame is current. The frame number of the
current frame is stored into symbol. A zero will be stored in symbol if no frames
exist. The optional symbol symbol2 amd symbol3, if present, receive the count of
opened frames and the maximum ID of them.

fra 3D_reset

fra 3D_reset resets the 3D viewing parameters. By default, the 3D display
interface does not reset the rotation, translation, scaling, and clipping parame-
ters. This allows you to maintain the exact view of a 3D object between plots.
This frame operator resets all the 3D display parameters to initial values, just
like the set button in the 3D display interface.

fra xpand

fra xpand expands the current frame to cover all other frames. This enhances
the pixel resolution to show more detail. The current plot is automatically
redrawn.

fra unexpand

fraunexpand restores an expanded frame to its previous size and location. The
current plot is automatically redrawn.

fraj

fra j iconifies the current frame. The current plot is automatically redrawn.

fra k

fra k restores an iconified frame to its previous size and location. The current
plot is automatically redrawn.

franx0y0x1lyl
fra n returns the current coordinates of the active frame.

All the above fra operations act upon the single current frame. Recall that each

frame has its own complete graphics context including graphics, symbol val-

ues and data. For example, when you change to a different current frame, the

1D workspace is overwritten with the new frame’s copy of the workspace con-
tents.

The following fra operators facilitate the transfer and sharing of context
between pairs of frames:

fra export frame#

fra export exports the entire context of the current frame to another frame. The
current frame does not change and its context is not affected.

fra import frame#

fra import imports the entire context from another frame into the current
frame. The graphics context, symbols and data are changed in the current
frame, which becomes an exact copy of the specified frame’s context.

fra symbol frame# mode symbol_name local_symbol

mode O=transfer from another frame, 1=transfer to another frame

fra symbol is used to pass a single symbol value between the current frame
and another frame. This operation is frequently used when working with cor-
related displays of corresponding regions of different spectra.

The mode parameter allows transfer of context symbols either into or out of the
current frame. When mode is zero, the value of symbol_name is transferred from
the other frame frame# to the symbols local_symbol in the current frame. When
mode is one, the value of symbol_name is transferred to the symbol of the same
name in the other non-current frame frame#.

The following fra operators facilitate the connection of frames-using this com-
mand you can assure that navigating in one frame will update the plot limits
in other frames:

fraq

fra q cleans up the frame connections. It is necessary to call this if you need to
start a new frame connection setup.

fra add frame#

fra add adds a frame to the frame connection list, subsequently the fra I(ink)
command should be called to set up the dimension connections.

fra link frame_n dimension_a frame_m dimension_b

Link dimension_a of frame_n to dimension_b of frame_m after both frame_n and
frame_m were defined as linked by the fra a(dd) command. If dimension_a or
dimension_b are less than or equal to zero, the connection along that dimension
gets broken. If both are less than or equal to zero, the link gets cleaned up.

fray frame_n dimension_a frame_m dimension_b

Define ajump from dimension_a of frame_n to dimension_b of frame_m after both
frame_n and frame_m were defined to be linked by the fra a(dd) command.

If later the fra y command without parameters is called from frame frame_n
then you can click a position in frame_n and that will define a new plane posi-
tion in frame_m along dimension_b.

fray

Execute the jump in the current frame if previously the current frame was put
on the connection list via fra a command and the jump was defined using the
fray command.

fra 0

Temporarily disables frame connection

fral

Restores frame connection if it was defined before.

ft — Fast Fourier transform

ft

ft performs a complex fast Fourier transform on the contents of work. The ft
command runs faster if the size of the data in the workspace is a power of two,
but it will transform any size of data.

If the symbol gibbs is set to 1, the first and last point of the workspace are
divided by two before transformation to properly weight the time period these
samples represent. If gibbs is set to 0, the division is not performed.

Symbol dependence

datsiz Number of Data Points
gibbs Gibbs Filter Switch

See also

dft — Fast Fourier transform of digitally oversampled data
rft — Real Fourier transform

bft — Bruker-Fourier transform

ift — Inverse Fourier transform

hft — Hilbert transform

ful — Full display

ful

ful draws the entire 1D spectrum in the current frame. ful is the opposite of the
exp command.

Symbol changed

First First Data Point
last Last Data Point

See also
exp — Expanded display
ip — Intensity plot

fXp — Filter cross peaks

fxp peaks diagonal tolerance confirm
fxp peaks doublets tolerance
fxp peaks asymmetric tolerance confirm

fxp peaks width min_width max_width confirm

fxp provides operators for various types of cross peak filtering. fxp is used
after picking peaks to remove unwanted peaks and eliminate redundant
peaks.

Symbol dependence
hafwid Cross Peak Half Width Factor

See also

pic — Peak pick and label

fxp peaks diagonal tolerance

peaks cross peak entity to filter

tolerance tolerance in data points

confirm wait for user confirm (1) or not (0)

units optional unit parameter — points (0), Hz(1) or ppm (2)
type diagonal type — body (0), D1D2 (1), D1D3 (2), D2D3 (3),

D1D4 (4), D2D4 (5), D3D4 (6)

fxp confirm (units type)

This operation removes all diagonal peaks from a square matrix or from a non-
square matrix if the units parameter is set to ppm and on of the type parameters
is set. If the peak center along each dimension is within tolerance points of cen-
ters for that peak in all other dimensions, the cross peak is considered to be on
the diagonal and will be deleted.

fxp peaks doublets tolerance

peaks cross peak entity to filter
tolerance tolerance in data points

This operation combines multiplet peaks into single peaks. If any two peak
centers are within tolerance points of each other along all dimensions, the two
peaks are combined into one larger peak with a footprint that covers all the
multiplet footprints.

fxp peaks asymmetric tolerance confirm (units type)

peaks cross peak entity to filter

tolerance tolerance in data points

confirm wait for user confirm (1) or not (0)

units optional unit parameter — points (0), Hz(1) or ppm (2)
type symmetrization type — D1D2 (0), D1D3 (1), D2D3 (2),

D1D4 (3), D2D4 (4), D3D4 (5)

This operation removes asymmetric peaks from a 2D square matrix. If the
optional units and type parameter is specified the matrix can be a non-symmet-
ric 2D, 3D or 4D. For every peak in the peaks entity, a search occurs for a peak
located within tolerance points of the symmetrical position. If no peaks are
found within this distance, that cross peak has no symmetric partner and is
deleted from the peaks entity.

fxp peaks width min_width max_width confirm

peaks cross peak entity to filter

min_width minimum width in data points
max_width maximum width in data points
confirm wait for user to confirm (1) or not (0)

This operation removes peaks from the database if their width is less than the
minimum width (min_width) parameter or greater than the maximum width
(max_width) parameter.

get — Get a symbol value

get prompt_string symbol_name
prompt_string prompt requesting for user input
symbol_name name of symbol that will receive the input string

get is used to prompt for data from within a macro. The command get issues
the specified prompt (entered as the prompt_string) when executed in the

macro, then waits for you to enter a value for the defined symbol_name. The
value of the specified symbol is set to the data value entered. Enclose the
prompt_string in single quotes if you wish to preserve uppercase letters and
spaces.

See also

def — Define a symbol

lis— List symbol table

gf — Generate FID

gf amplitude frequency tau

gf allows you to generate an FID containing as many lines as you wish. The
amplitude is in arbitrary units. The frequency is in Hz, and the tau is the time con-
stant of the decay in seconds, or (1/linewidth in Hz). If you let the program
prompt you for input, you can continue adding lines until you are done, then
terminate gf with a zero amplitude.

Symbol dependence

datsiz Number of Data Points

datype Data Type

See also

gsp — Generate spectrum

gif — Macro arithmetic goto

gif expression labell label2 label3

gif branches to a label depending on the numeric value of expression. If expres-
sion is negative, zero or positive, gif branches to labell, label2, or label3 respec-
tively. This command is valid only in macros.

gm — Gaussian/Lorentzian window

gm broadening coefficient

broadening line broadening in Hz
coefficient Gaussian coefficient

gm acts in the same manner as the gm command found on Bruker spectrome-
ters. The command gm is generally used to enhance resolution at the expense
of sensitivity. If the broadening and coefficient parameters are not entered, the
reserved symbols for line broadening (Ibroad) and Gaussian parameter

(gbroad) are used. Typically, a negative broadening parameter is used with the
coefficient parameter of 0.2 to give a Gaussian component to the line shape.
Symbol dependence:

swidth Spectral Width in Hz

datsiz Data Size

datype Data Type

gmh — Gaussian multiply in Hz

gmh broadening

broadening Gaussian broadening in Hz (optional)

gmh multiplies data in the work space by a Gaussian window. Gaussian
apodization, rather than Lorentzian multiplication (em), is useful in process-
ing data whose inherent line shapes are Gaussian as is the case for most solid
state NMR spectra. This command does not introduce apodization errors that
will adversely affect the data in later quantization, fitting, or deconvolution,
because it does not change the line shape from Gaussian to a Gaussian-Lorent-
zian mixture (Gladden 1986). The gmh command may also be used in con-
structing customized apodization function for two-dimensional processing.

Note: Do not confuse the gmh command with the gm
command, which applies to a separate function.

go — Macro unconditional branch

go macro label

macro label label teling the go command where to branch to

go is used within macros to perform an unconditional branch to the specified
label.

gre — Greek text annotation

gre x0 y0 (z0 a0) (fix) (anchor) number text

x0 x-coordinate for text placement

y0 y-coordinate for text placement

z0 optional z-coordinate for text placement

a0 optional a-coordinate for text placement

fix scaling of text — fixed (0), according to Y size of plot (1),

according to X size of plot (2), according to both sizes (3
anchor centering — left justify (0), center point (1), right justify (2)
number number of characters of text

text text to be made in Greek characters

gre draws text with its origin at (x0, y0) (optionally z0 and a0 if strip plot of a
3D or 4D matrix). The coordinates are interpreted based on the symbol annunt.
All 24 Greek characters can be drawn, in both upper and lower case. The text
is translated from the Roman to Greek alphabets as shown below:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABXAEOTIHIOKAMNOIIOPETYCQEYZ

abcdefghijklmnopqgrstuvwxyz

oafBxdedymioxkAipuvondpoTvd 0wy

Symbol dependence
anncol Annotation Color
annunt Annotation Units
annang Annotation Angle
annsiz Annotation Text Size
slant Annotation Text Slant
thick Text Thickness

See also
tex — Text annotation

ann — Annotate plot

gto — Macro case goto

gto expression labelO labell ... labeln

gto branches to the nth label based on the value of the expression in the range
0:n. If the expression value is less than zero or greater than n, no branch will
occur. This command is valid only in macros.

gsp — Generate spectrum

gsp intensity frequency Lorentzian Gaussian

intensity intensity of FID to generate
frequency frequency of generated spectrum
Lorentzian Lorentzian line width

Gaussian Gaussian line width

gsp generates an FID from the input parameters. The gsp command prompts
you for the parameters of a set of lines and then generates a spectrum with

these lines. Parameters include intensity, frequency, Gaussian, and Lorentzian
line widths. If both Gaussian and Lorentzian line widths are specified, a Voigt

line shape is computed. gsp adds the lines to the data in the work space, so the
work space should be set to zero before you use this command. gsp generates
only real data, therefore if you need a complex spectrum, a Hilbert transform
(hft) must be performed on the FID.

gv — Get value

gv point real symbol_name imaginary symbol_name

point data point number

real symbol_name name of symbol to receive real part

imaginary symbol_name name of symbol to receive imaginary part
(optional)

gV gets the value of the specified data point and assigns the value to the
defined symbol(s). If the point number is outside the range of 1 to frsize (max-
imum frame size), no action is taken. The symbol for the imaginary part is
optional, and will be ignored in the case of real data.

Symbol dependence

datype Data Type

See also

pv — Put value

hav — Halve data size

hav

hav halves the size of the workspace by averaging successive pairs of points.
The hav command works in a manner opposite the double data size command
(dbl)

Symbol dependence

datsiz Number of Data Points

datype Data Type

Symbol changed

datsiz Number of Data Points

See also

dbl — Double data size

hcp — Hard copy plot

hcp
hcp preview

hcp setup

The printing of FELIX 2002 is WYSIWYG, so the parameters that affects spec-
tral display on the screen also affects the printout. The parameters used in the
previous versions that only controlled hardcopy, such as hardmo, harddy,
papwid, paphgt, hardx0, hardy0, hardxs, hardys, pltorg, and orient, are all
obsolete.

hcp setup displays the standard Print Setup dialog for you to select printers,
set page properties, etc.

hcp preview displays the standard Print Preview.

hcp displays the standard Print dialog box and submit the print job if you click
OK.

Note: Depending on which frame is the active, hcp applies to
both spectral display and spreadsheet display.

See also

dr — Draw work space and stack

ip — Intensity plot

cp — Contour plot

sp — Stack plot

sca — Scale factor for dimension

hft — Hilbert transform

hft mode

hft performs a Hilbert transform on real data in the workspace by converting
areal vector into a complex vector. It is important that the number of points in
the workspace be power of two. The Hilbert transform generates the imagi-
nary (dispersive) part of the spectrum from the real vector and is useful for
phase correcting frequency-domain data that has no imaginary part. Once hft
generates the imaginary data, you may use the inverse FFT (ift) to transform
the data into time-domain data. Many useful processing tricks can be per-
formed only in the time domain, thus the Hilbert transform is useful for con-
verting real data to time-domain form.

If the mode parameter is set to 1 then a different and more precise algorithm is
used (Ernst 1969, Zolnai 1990, Rance private communication).

Symbol dependence

datsiz number of data points

See also

ft — Fast Fourier transform

bft — Bruker-Fourier transform
ift — Inverse Fourier transform

rft — Real Fourier transform

idf — Is defined

idf test_symbol ans_symbol

test symbol symbol name to test for definition
ans_symbol symbol name to receive the result of test

The idf command tests to see if a symbol is defined. If test_symbol is defined,
then ans_symbol is set to 1. Otherwise, the value is 0.

See also

cdf — Conditional define

def — Define a symbol

pur — Purge symbol tables

if — Macro if conditional branch

if expressionl operator expression2 macro_label

expressionl first expression for content comparison
operator relational operator defining how expressions relate
expression2 second expression for content comparison

macro_label branch point target when the if statement is true

if compares expressionl and expression2 according to the relational operator,
defined by operator. Two classes of relational operators are provided; one com-
pares expressions as a string of characters, while the other first converts the
expressions to real numbers. If the condition is true, control transfers to the
specified macro label; if it is false, no branch occurs. There are 12 legal rela-
tional operators:

Numeric String

Operator Operator Description
eq eqgs equal to

ne nes not equal to

It Its less than

le les less than or equal to

gt gts greater that
ge ges greater than or equal to

Advanced if conditionals

1. Sub-string Specification: For string comparisons, there is a syntax for spec-
ifying a substring on which to base the comparison. To specify a substring,
append (first_char:last_char) to the end of expression, with no intervening
spaces. This means to consider only the characters beginning with first_char
and ending with last_char in the comparison.

2. Compound Conditionals: All forms of the if command also support com-
pound conditionals. You can combine two or more conditionals in one if
command by separating them with the keywords and or or.

Example:
if expression op expression and expression op expression ...

if expression op expression or expression op expression ...

Macro if conditional block execution

if exp op exp then

{block of commands}

eif

The block if evaluates the condition as described above. If the condition is true,

all commands in the block up to the eif are executed. If the condition is false,
execution skips to the command following the eif.

if exp op exp then

{true block of commands}

els

{false block of commands}

eif

The if/then/els evaluates the condition as described above. If the condition is
true, the block of statements between then and els is executed, then execution

skips to the command following the eif. If the condition is false, the block of
commands between the els and eif commands is executed.

Due to block ifs and compound conditionals, the reserved keywords then,
and, and or may not be used as labels in an if command.

ift — Inverse Fourier transform

ift
ift performs an inverse Fourier transform; it transforms a complex frequency-
domain spectrum into a complex time-domain FID.

Symbol dependence
datsiz Number of Data Points
gibbs Gibbs Filter Switch
datype Data Type

See also

dft — Fast Fourier transform of digitally oversampled data
ft — Fast Fourier transform

rft — Real Fourier transform

bft — Bruker-Fourier transform

ing — Inquire If file exists

ing ext file_name symbol

ext extension of file_name; defines prefix
file_name file name to look for, without extension
symbol symbol to set to exist status

inq is used to determine if a specified file already exists or not. inq sets symbol
to zero if the file does not exist and to one if the file does exist. When ext is a
known file extension (dat, mat, mac, dba, ann, mnu), the corresponding prefix
and extension will be used. When the extension is null, no prefix or extension
will be used.

Symbol changed

The symbol specified as a parameter is set to zero or one.

ins — Insight II-FELIX inter-process communication

ins keyword rest_of command_line
ins initialize
The ins initialize command initializes the FELIX server.

ins connect

The ins connect command connects FELIX to Insight 11

ins check

The ins check command checks to see if the RPC connection is currently up

ins command rest_of_command_for_Insight

ins command passes the command string to Insight |1, substituting the atom
specification from the NMR spec into an Insight Il spec.

ins command?2

ins command? passes the string to Insight Il as is, without converting the data
format.

ins getdir

The ins getdir command gets the current directory from Insight II.

The ins command has operators to facilitate communication between FELIX
and Insight Il. This allows the two programs to interact whenever they are
being run simultaneously.

All the ins commands set the symbol instat to show the resulting status of that
ins call. A status of zero (0) denotes success, while a non-zero status indicates
an error.

The keywords are:

init initialize the FELIX server

connect connect FELIX to Insight |1

check check if RPC connection is currently up

command send a no reply wanted command to Insight 11

getdir get the current directory from Insight I

int — Integral

int

int generates the integral of the data in the workspace and pushes it onto the
display stack. For optimal results using the int command, a level baseline is
necessary.

Symbol changed
stack Stack Depth

See also

der Derivative

inv — Inverse of workspace

inv
inv replaces the data in the workspace vector by its inverse. The inv command
takes the reciprocal of each point in the workspace (replaces work by 1/work)

and stores the new value back in the workspace. If there are any zero points in
the workspace, they are skipped to avoid a divide by zero error. inv can be
used to create novel and useful window functions for apodization.

ip — Intensity plot

ip

ip draws an intensity plot of the current plot region on the graphics device. The
default rendering mode erases the screen before each display; this action may
be defeated by setting the reserved symbol erase to 1.Video buffering may be
enabled by setting the reserved symbol animat to 1. The behavior of the com-
mand ip is affected by a number of other reserved symbols.

Symbol dependence

animat Specify Video-Buffering

clmode Selects Linear or Geometric Contour Spacing

conmod Contour Level Modifier

cycle Sets Color Cycle

drwbox Draw Box Around Plot

level First Contour Level

nlevel Number of Contour Levels

posneg Enables Plotting of Negative Contour Levels

projct Select Dimensionality of Display

pennum First Color

rowinc Point Skipping Factor For 3D Displays

Symbol changed
disply Current Display Type

See also

cp — Contour plot

np — Null plot

sp — Stack plot

pla — Redisplay 3D object

rmx — Reference matrix

jcp — Calculate J-coupling constant

jcp peaks item who jlval j2val j1sig j2sig

peaks cross peak entity defining footprints in COSY matrix

item item of selected peak (-1 enables crosshair to select) (-2
enables crosshair to select E-COSY peak)

who symbol to receive item number selected if item = -1

iNval symbol to receive J coupling value (Hz) along dimension N

jNsig symbol to receive sigma of J coupling value along dimen-
sion N

jep calculates J coupling constants by fitting multiplet footprints. This com-
mand destroys the contents of the work space and yields coupling constants
for both dimensions along with standard error. Be aware that apodization
functions can alter the observed line shapes of antiphase multiplets and affect
the values calculated by jcp. This should be considered a somewhat crude
measurement.

If item is set to -2 then the program allows you to drag two subpeaks of an E-
COSY multiplet, and the optimized J coupling values are returned to jNval
variables.

The optimization method used in determining the coupling constant can be
either quasi-Newton, simplex, or simulated annealing depending on the opt-
mth symbol. The default is quasi-Newton minimization.

Symbol dependence

optmth optimization method for DQF-COSY or E-COSY J coupling extraction:
Quasi-Newton (0), simplex (1) or simulated annealing (2).

kw — Kaiser window

kw size parameter
size window size in points
parameter window parameter; try 8

kw is a window function described in Hamming’s book Digital Filters. This
window is useful for apodizing truncated data.

Id — List data

Id first last
first first point for listing data values (optional)
last last point for listing data values (optional)

Id lists the values of the data in the work space. If no parameters are entered,
data values for all of the points in the work space are listed.

See also

gv — Get value

Idb — Load buffer into work space

Idb buffer
buffer buffer number

Idb loads the contents of the specified buffer into the work space.

Symbol dependence
datsiz Number of Data Points
datype Data Type

nframe Number of Buffers

See also
adb — Add work to buffer
swb — Store work space to bundle

sp — Stack plot

lim — Matrix limits

lim dimension first_point last_point

dimension matrix dimension for these limits
first_point first point along dimension
last_point last point along dimension

lim is used to select regions of multidimensional matrices for display on
graphics devices. Matrix subsets are defined by specifying the first and last
data points defining the boundaries of the subset for each matrix dimension
using the lim command. (For example, by typing lim 1 1 50, lim 2 1 50, lim 3
150, you would define the limits of a 3D subset, in this case a cube.) Projections
(or slices) of a matrix may also be defined by setting the first and last points of
one of the limits to the same number for one or more dimensions, thus decreas-
ing the dimensionality of the data. (For example, lim 125 25, lim 21 50, lim 3
150 would define a 2D slice of a 3D matrix taken through point 25, along
dimension 1). To list the current matrix limits, the lim 0 command may be
entered. Other forms of the lim command include:

lim -1
Sets limits with the rubber band box cursor.
lim -2

Resets limits to their previous designation; like old for 1D.

lim -3
Sets full ND limits, like ful for 1D.

Symbol changed
lolimn Low Limit For Dimension N

hilimn High Limit For Dimension N

See also

bld — Build a matrix file
mat — Open matrix

cp — Contour plot

ip — Intensity plot

ord — Matrix dimension order

lin — Line annotation

lin X0 y0 (z0 a0) x1 y1 (z1 al)

x0 x-coordinate starting point for line

y0 y-coordinate starting point for line

z0 optional z-coordinate for starting position for line if matrix is
more than 2D

a0 optional a-coordinate for starting position for line if matrix is
more than 3D

x1 x-coordinate for ending position for line

yl y-coordinate for ending position for line

z1 optional z-coordinate for ending position for line if matrix is
more than 2D

al optional a-coordinate for ending position for line if matrix is

more than 3D

lin draws a line (solid or dashed depending on the symbol annlst) from (x0,
y0) to (x1, y1). The optional coordinates are useful if the matrix is a 3D or 4D
and the current plot is a strip plot. The line should be drawn starting in one
strip and ending in another strip, where the strips are taken from different
slices of the ND matrix. The color of the line is determined by the symbol
anncol. The units of all coordinates are interpreted based on the symbol
annunt and may be specified in a variety of units.

Symbol dependence
anncol Annotation Color
annlst Annotation Line Style

annunt Annotation Units

See also
arr — Arrow annotation
rec — Rectangle annotation

ann — Annotate plot

lis — List symbol table

lis optional_specifier

lis displays current symbols and their values. The optional specifier may con-
tain a * wildcard to list only specified symbols.

See also

def — Define a symbol

Im — List macro

Im file_name
file_name macro file name (optional; default is current macro)

Im lists the current or specified macro.

loa — Load vector from matrix

loa diml dim2 dim3 ...

diml vector coordinate to be loaded in D1 dimension
dim2 vector coordinate to be loaded in D2 dimension
dim3 vector coordinate to be loaded in D3 dimensio

loa loads the specified vector from a matrix into the work space. For example,
loa 0 1 would load the vector along D1 that passes through point 1 of D2; and
loa 1 0 would load the vector along D2 that passes through point 1 of D1. loa
must be given exactly one parameter that is zero. You can think of the zero as
specifying the dimension along which the vector is loaded, and the other
parameters locating the vector position in all other dimensions.

Symbol changed

dnvect Vector Coordinates Along Dimension N
datsiz Number of Data Points

datype Data Type

sfreq Observe Frequency

swidth Spectral Width

refsh Reference Shift
refpt Reference Point
first First Point

last Last Point

disply Current Display

See also

sto — Store vector to matrix

Iwb — Load work space from bundle

log — Natural logarithm of work space

log

log replaces each data point in the workspace with its natural (base e) loga-
rithm. The log command may be used to compute some novel windows for
apodization. If a data point in the workspace is less than or equal to zero, it is
set to zero to avoid a mathematical error.

Symbol dependence

datsiz Number of Data Points

See also

aln — Antilogarithm (exponential) of work

Imd — Load theoretical vector

Imd dim1 dim2 dim3 ...

diml vector coordinate to be loaded in D1 dimension
dim2 vector coordinate to be loaded in D2 dimension
dim3 vector coordinate to be loaded in D3 dimension

Imd loads the specified vector from a theoretical matrix into the work space
similarly to the loa command. Therefore you must first issue the data model-
ing command (md) to display the theoretical matrix. The loaded vector con-
tains data from the peak and volume entities. For example, Imd 0 1 would load
the vector along D1 that passes through point 1 of D2; and Imd 1 0 would load
the vector along D2 that passes through point 1 of D1. Imd must be given
exactly one parameter that is zero. You can think of the zero as specifying the
dimension along which the vector is loaded, and the other parameters locating
the vector position in all other dimensions.

Symbol changed

dnvect Vector Coordinates Along Dimension N

datsiz Number of Data Points
datype Data Type

sfreq Observe Frequency
swidth Spectral Width

refsh Reference Shift

refpt Reference Point

first First Point

last Last Point

disply Current Display

See also

md — Model data

Ipf — Linear predict first points

Ipf points coefficients peaks first

points number of data points used to calculate the linear pre-
diction coefficients

coefficients number of linear prediction coefficients used for linear
predicting points

peaks number of exponentially damped signals in the FID (not
currently used)
first first data point to linear predict

Ipf uses linear prediction to estimate the values of incorrectly acquired first
points using subsequent data points. Ipf determines coefficients-LP coefficients
based on data points numbered (1 + first) through points. New data values are
generated backwards from point first to point one.

Suggestions for choosing the parameters include setting points to the number
of data points in the FID and setting coefficients to one-quarter to one-third the
value of points. However, if there are more than several hundred data points in
the FID, Ipf may require more than tens of seconds to perform its work. If this
occurs, choose smaller values for these two parameters by selecting a value for
coefficients that is greater than the number of signals in the FID and setting
points to three or four times the value of coefficients.

The peaks parameter is left in for compatibility with older macros, but its value
is not used in the calculation.

Symbol dependence:
datsiz Data Size

datype Data Type

See also

Ipl — Linear predict last points

Ipl — Linear predict last points

Ipl points coefficients peaks first last reflect

points number of data points used to calculate the linear pre-
diction coefficients

coefficients number of linear prediction coefficients used for linear
predicting points

peaks number of exponentially damped signals in the FID (not
currently used)

first first data point to linear predict

last last data point to linear predict

reflect root reflection flag

Ipl uses linear prediction to extrapolate additional points from existing time-
domain data. This command can be used as an alternative to zero-filling or
apodization when dealing with truncated data. Ipl determines coefficients-LP
coefficients-based on data points 1 through points. New data values are gener-
ated for points first through last. If last is greater than the number of data
points, the datsiz symbol is set to last. The root reflection flag enables reflection
of roots that fall outside the unit circle, which ensures that the linear prediction
coefficients represent decaying signals. Set reflect to 1 to enable root reflection,
and to 0 to disable it.

Suggestions for choosing the parameters include setting points to the number
of data points in the FID and setting coefficients to one-quarter or on-third the
value of points; however, if there are more than several hundred data points in
the FID, Ipl may required more than tens of seconds to perform its work. If this
occurs, choose smaller values for these two parameters by selecting a value for
coefficients that is greater than the number of signals in the FID and setting
points to three or four times the value of coefficients.

The peaks parameter is left in for compatibility with older macros, but its value
is not used in the calculation.

Symbol dependence
datsiz Data Size

datype Data Type

See also

Ipf — Linear predict first points

Ips — Solvent suppression using linear prediction

Ips points peaks threshold

points number of points used to calculate linear prediction
coefficients
peaks number of signals to subtract from data

threshold minimum ratio of adjacent singular values

Ips subtracts the largest signal(s) from the time domain data, which accom-
plishes solvent signal suppression. The algorithm uses singular value decom-
position to determine the singular values of the data matrix. These singular
values and the signal amplitudes are correlated such that the highest ampli-
tude signals have the largest singular values. The command uses this fact and
additional information from the singular value decomposition (SVD) to gener-
ate a set of data points that are nearly identical to the highest amplitude sig-
nal(s) in the data set, and which is subsequently subtracted from the data.
points sets the number of points used to create the data matrix for the singular
value decomposition. The number of peaks you wish to subtract from the sig-
nal is set with peaks. When transforming data "blindly", as in macros, it may be
useful to prevent signal subtraction when the peaks signal is not significantly
larger than the next largest signal. The threshold parameter accomplishes this
by referring to the ratio between the peaks singular value and the (peaks + 1) sin-
gular value. If the ratio falls below threshold, the subtraction will not occur.

See also

cnv — Time-domain convolution

Ipx — General linear prediction

Ipx use_first use_last predict_first predict_last coefficients method reflect

mode

use_first first point used to calculate the linear prediction coef-
ficients

use_last last point used to calculate the linear prediction coef-
ficients

predict _first first data point to linear predict
predict_last last data point to linear predict

coefficients number of linear prediction coefficients used for linear
predicting points

method method to use
reflect root reflection flag
mode mirror-image mode

Ipx uses linear prediction to extrapolate additional points from existing time-
domain data. This command can be used as an alternative to zero-filling or
apodization when dealing with truncated data. Ipx determines coefficients —
LP coefficients — based on data points use_first through use_last. New data val-
ues are generated for points predict_first through predict_last. If predict_last is
greater than the number of data points, the datsiz symbol is set to predict_last.
The root reflection flag enables reflection of roots that fall outside the unit cir-
cle, which ensures that the linear prediction coefficients represent decaying
signals. Set reflect to 1 to enable root reflection, and to 0 to disable it.

The method can be either forward prediction (method=0) or backward
(method=1). You can use forward-backward (Zhu and Bax 1992) prediction,
which has been proven to be superior to the forward method, but is slower
(method=2). If the FID does not decay, then you can also carry out mirror-image
linear prediction (Zhu and Bax 1990) (method=3). In this latter case you have to

set the mode parameter to reflect whether your data was collected with half
dwell time shifted (0) or not (1).

Suggestions for choosing the parameters include setting use_first and use_last
to include as many good points as possible from the FID, and setting coefficients
to one-third or one-fourth the value of points; however, if there are more than
several hundred data points in the FID, Ipx may require more than tens of sec-
onds to perform its work. If this occurs, choose smaller values for these two
parameters by selecting a value for coefficients that is greater than the number
of signals in the FID.

Symbol dependence
datsiz Data Size

datype Data Type

See also

Ipl — Linear predict last points

Ipf — Linear predict first points

Irl — Find local extremum

The Irl commands finds local minimum, maximum or extremum in the current
spectrum.

Il max loptl hiptl ... loptn hiptn symbol_posN symbol_int

loptN low point along dimension N

hiptN high point along dimension N

symbol_posN symbols to recieve the position of the maximum
symbol_int symbol to recieve the value at the maximum

Irl max finds the maximum intensity position within the defined box limits
and stores the position into the symbol_pos1, symbol_posn; the intensity at that
place is stored in symbol_int.

If (loptl) is set to -1 it finds the maximum intensity position defined by the con-
secutive rubber box cursor:

Il max -1 symbol_posN symbol_int

If (loptl) is set to O it finds the maximum intensity position within the current
plot limits:

Il max 0 symbol_posN symbol_int

Irl min loptl hiptl ... loptn hiptn symbol_posN symbol_int

loptN low point along dimension N

hiptN high point along dimension N

symbol_posN symbols to receive the position of the local minimum
symbol_int symbol to receive the value at the local minimum

Irl min finds the minimum intensity position within the defined box limits and
stores the position into the symbol_pos1, symbol_posn; the intensity at that place
is stored in symbol_int.

If the first parameter (loptl) is set to -1 then it finds the minimum intensity
position defined by the consecutive rubber box cursor:

Il min -1 symbol_posN symbol_int

If (loptl) is set to 0 then it finds the minimum intensity position within the cur-
rent plot limits:

Irl min 0 symbol_posN symbol_int
Irl ext loptl hiptl ... loptn hiptn symbol_posN symbol_int

loptN low point along dimension N

hiptN high point along dimension N

symbol_posN symbols to receive the position of the local extremum
symbol_int symbol to receive the value at the local extremum

Irl ext finds the extremum intensity position within the defined box limits and
stores the position into symbol_pos1, symbol_posn; the intensity at that place is
stored in symbol_int.

If (loptl) is set to -1 it finds the local extremum intensity position defined by the
consecutive rubber box cursor:

Il ext -1 symbol_posN symbol_int

If (loptl) is set to O it finds the local extremum intensity position within the cur-
rent plot limits:

Il ext 0 symbol_posN symbol_int

Il pma loppm1 hippml ... loppmn hippmn symbol_posN symbol_int

loppmN low ppm along dimension N

hippmN high ppm along dimension N

symbol_posN symbolsto receive the position in ppm of the maximum
symbol_int symbol to receive the value at the maximum

Irl pma finds the maximum intensity position within the defined box limits (in
ppm) and stores the position in ppm into symbol_pos1, symbol_posn; the inten-
sity at that place is stored in symbol_int.

Irl pmi loppm1 hippml ... loppmn hippmn symbol_posN symbol_int

loppmN low ppm along dimension N

hippmN high ppm along dimension N

symbol_posN symbols to receive the position in ppm of the local min-
imum

symbol_int symbol to receive the value at the local minimum

Irl pmi finds the minimum intensity position within the defined box limits (in
ppm) and stores the position in ppm into symbol_pos1, symbol_posn; the inten-
sity at that place is stored in symbol_int.

Il pex loppm1 hippml ... loppmn hippmn symbol_posN symbol_int

loppmN low ppm along dimension N

hippmN high ppm along dimension N

symbol_posN symbols to receive the position in ppm of the local
extremum

symbol_int symbol to receive the value at the local extremum

Irl pex finds the extremum intensity position within the defined box limits in
ppm and stores the position in ppm into symbol_pos1, symbol_posn; the inten-
sity at that place is stored in symbol_int.

Ivo — Load volume time course

Ivo volumes item# (start)

volumes DBA volume entity

item# item number of cross peak
start optional parameter — start the time course with zero (0)
or not (1)

lvo loads the volume time course for a single cross peak at all non-zero mixing
times into the work space. This generates a set of x, y pairs in which x is time
and y is volume. Use dr to display the volume time course, and xyp fit to fit
the time course to a selected function. Peaks must have been picked and vol-
umes measured before meaningful time courses may be loaded.

The optional start parameter can insert a zero volume at zero time (default
action if no parameter specified or start=0) or not (start=1).

Symbol changed

datsiz Number of Data Points

datype Data Type

See also

mgv — Matrix get data value

gv — Get value

vol — Integrate cross peak volumes
xyp — X,Y data pair manipulation

pic — Peak pick and label

Iwb — Load work space from bundle

Iwb

lwb is used to load the next bundle vector into the workspace. The vector may
then be processed and returned to the bundle using swb.

Symbol changed

datsiz Number of Data Points
datype Data Type

sfreq Observe Frequency
swidth Spectral Width

refsh Reference Shift

refpt Reference Point

See also
bun — Set bundle mode
loa — Load vector from matrix

swh — Store work space to bundle

mat — Open matrix

mat file_name access storage

file_name file name of matrix
access matrix access (r = read only, w = write enable)
storage matrix storage location (disk or memory)

mat opens an existing matrix; previously built with the build matrix command
(bld). An open matrix may be accessed one vector at a time using the load vec-
tor from matrix command (loa). A new matrix may be filled with data using
the sto command.

The storage parameter allows you to control whether the matrix resides on disk
(default) or is read entirely into memory. If your workstation has enough
RAM, storing the matrix in memory speeds up most processing and plotting
functions. If you attempt to store the matrix to memory and there is notenough
space available, the matrix will simply stay on the disk and no error will be
flagged.

Symbol dependence

matpfx Matrix Prefix

Symbol changed

dimen Dimensionality of Matrix
dlsize D1 Size

d2size D2 Size

d3size D3 Size

d4size D4 Size

blsize D1 Brick Size

b2size D2 Brick Size
b3size D3 Brick Size
b4size D4 Brick Size

matfil Matrix File

See also

cmx — Close matrix file(s)

md — Model data

md real model peaks volumes slot

real multiplicative factor for combining real data
model multiplicative factor for combining modeled data
peaks DBA peaks entity

volumes DBA volumes entity

slot DBA slot in volumes entity

md allows you to display any linear combination of real and modeled N-
dimensional data. To use md, first pick peaks using pic and measure volumes
using vol. These two steps define the model cross peak shifts, line widths, and
intensities. Next, use the md command to enable display of model data. The
effects of md stay in effect until disabled by setting model to zero. Modeled data
can be displayed using cp, ip, and sp.

For example:
md10 (Display real data only — disables model data)
md 0 1 peaks volumes 1 (Display model data only)

md 1 -1 peaks volumes 1 (Display difference (real minus model)

mf — Matched filter

mf rho Ibroad

rho ratio of the final Lorentzian line width to the initial line width
(default = 2.0)
Ibroad line broadening to be used if fit fails (optional)

mf calculates and applies a matched exponential window to the FID. For
rho=2.0, this window doubles the line width, and is a traditional "match filter".
rho values of 1.3 to 1.5 are often used as well. rho allows you to tailor the trade
off between resolution and sensitivity in the transformed spectra.

Line broadening is calculated using an analytical least-squares fit to the FID. If
the FID has extremely low signal to noise, the fit may fail; a message to that

effect will appear on the screen and the value you have specified in Ibroad will
be used instead. Note that a large, narrow solvent resonance may dominate the

fit. After mf, the reserved symbol Ibroad is set to the value of the line broad-
ening applied by mf.

Symbol dependence:

datsiz Number of Data Points

Symbol changed:

Ibroad Line Broadening

mgv — Matrix get data value

mpv-Matrix put data value

mgv diml dim2 dim3 ... symbol

mpv diml dim2 dim3 ... value

diml point coordinate in the D1 dimension

d!mZ point coordinate in the D2 dimension

dim3 point coordinate in the D3 dimension

syrl‘nb0| symbol_name to receive the value at that ND point
value

real value to store at that N-D point

mgv and mpv are similar to the commands gv and pv, except these two com-
mands operate on the current matrix instead of the 1D work space.

mgvV loads the value out of the matrix at one N-D point, and stores that value
to a symbol. mpv stores the given value into the matrix at the specified N-D
point. The matrix must be write-enabled for mpv.

See also

gv — Get value

pv — Put value

mmp — Display memory map

mmp

mmp allows you to display and modify the memory map. FELIX maintains a
pool of memory that can be allocated for use. The command mmp displays the
size and usage for each allocated block of memory. mmp is commonly used as
adiagnostic aid to help figure out what happened if something does not work

properly.

See also

cfg — Configure memory

mnu — Menu manager

mnu op parameters

op action
b(ar) insert bar menu
g(auge) put up, update, and remove a meter bar gauge
rfemove) remove menu
p(arams) insert a control panel

o(pen) insert a modal control panel

a insert a non-modal control panel

h(eader) changes the header text of the main window
s insert a control panel on top of a table

The mnu command provides menuing capabilities for FELIX. The mnu oper-
ations allow macros to generate popup menus on the display device and inter-
act with you in menu mode. Menu and control panel definitions are simple
ASCII files, which you can easily customize. More detailed information on the
menu manager is given in Chapter 5, Menus and Control Panels

mnu bar motfile X_origin Y_origin

mnu bar draws a menu of items on the display. A bar menu goes across the dis-
play, while an insert menu goes down the display. The contents and size of the
menu are read from the file mot_file. The location of the menu is specified in
character cell units, with the upper left corner of the display being cell (x=1,
y=1). No action other than drawing of the menu is performed. See Chapter 5,
Menus and Control Panels, for a description of the contents of the menu files.

mnu gauge 1 max_value text_message
mnu gauge 2 cur_value

mnu gauge 3

The mnu gauge command allows you to create a descriptive meter bar gauge
to show the progress of any complex operation. The meter gauge visually
shows any value between zero and max_value as a colored bar that grows or
shrinks as cur_value changes.

mnu gauge
modes
mode Description

1 defines a new meter gauge, gives the uppermost value,

puts the meter on the center of the FELIX display, and
labels it with the text message

2 updates the gauge to show the percentage:
"cur_value/max_value * 100%"
3 removes the gauge and restores the image underneath.

In typical use, mode 1 is executed once, mode 2 is executed many times (with
a different cur_value each time), and mode 3 is executed once. Note that only
one gauge can be displayed at any given time. In addition, the image or picture
behind the gauge should not be updated or redrawn while the gauge is dis-
played.

The selected item is returned in two symbols, menu and item. The menu sym-
bol is set to the name of the file menu_file selected, or set to null if the cursor
was not located on any menu. The item symbol is set to an integer specifying
which item in the menu was selected, or set to 0 if the cursor was not on a
menu.

mnu remove menufile

mnu remove all

Remove one menu from the display, or remove all menus if all is specified.

mnu p menufile X_origin Y_origin

Draws an interactive control panel (dialog box) on the display, letting you see
and change symbol values. This operator waits for you to select an exit button
using the mouse button, and then the control panel is removed. Based on
which exit button is selected, either no action is performed (button 0) or all
symbols appearing in the control panel are updated (any non-zero button).
The reserved symbol button is set to the button number selected. See Chapter
5, Menus and Control Panels for a description of the content of control panel
files.

mnu a menufile X_origin Y_origin

Draws a non-modal control panel on the display, letting you see and change
symbol values. This control panel continues the execution of the macro with-
out waiting for you to select an exit button button (unless you explicitly hold
the macro flow using wai).). See Chapter 5, Menus and Control Panels for a
description of the content of control panel files.

mnu h option (text)

The mnu h command allows you to change the header text of the main frame.
If the mnu h 1 text command is issued then the text in the text symbol is put on
the frame header. The consecutive mnu h 2 command clears up and sets back
the header to the default setting of 1.

Symbol changed

button Exit button number

ms — Magnitude spectrum

ms

ms replaces the real part of the work space with the sqrt[(real)2 + (imag)2)] or
the absolute magnitude of the data, and replaces the imaginary part of the

work space with the arctan(real/imag) or the phase array of the data, in the
range -180 to +180 degrees.

See also

ps — Power spectrum

mul — Multiply the work space by a number

mul real_multiplier imaginary_multiplier

real multiplier number to multiply all real points by
imaginary multiplier number to multiply all imaginary points by

mul multiplies the data in the work space by the specified number. If the data
in the work space is complex (datype = 1) then the multiplier may be complex.
Note that if both the workspace and the parameters for this command are com-
plex, then a complex multiplication will be carried out:

result_real = work_real * real_multiplier - work_imag * imag_multiplier
result_imag = work_real * imag_multiplier + work_imag * real_multiplier
The mul command allows you to change both the magnitude and the phase of
the data in the work space.

Symbol dependence

datype Data Type

See also

add — Add number to work

mwb — Multiply work by buffer

mwb buffer

buffer buffer number

mwb multiplies the data in the work space by the data in the specified buffer.
This command is commonly used after an apodization window is stored in a
buffer; mwb multiplies the data in the work space by the stored window dur-
ing a transform. Performing apodization by buffer multiplication saves time
during lengthy multidimensional transforms.

See also

stb — Store work space to buffer
adb — Add work to buffer

Idb — Load buffer into work space

nd2 — Neighbor detection in 2D NOESY spectrum

This command is used to find potential neighbor patterns for any or all pat-
terns. This requires a peak picked 2D NOESY spectrum and its associated pat-
terns. The nd2 command reports neighbor probabilities.

nd2 tol tolerance

tolerance resonance collapse tolerance
This command string defines the frequency collapse tolerance, to judge
whether a candidate frequency is a new one.

nd2 noe noecon noepks

noecon minimum number of pattern frequencies with which a
candidate must have NOE contacts

noepks minimum number of peaks (must be at least equal to the
number of contacts)

nd2 pat loppm hippm maxfrq
loppm hippm range of pattern frequencies to use in ppm. Only NOEs
with frequencies in this range are considered. For

proteins, this is the HA, HB region, possibly extended
with an amide proton.

maxfrq maximum number of frequencies to use for each pat-
tern

nd2 lev outlev

outlev level of output: 0 =silent, 1 = low, 2 = medium, 3 = high, 5 =
detailed

nd2 norm false/true

This command utilizes the normalize option, which normalizes the scores for
each pattern to one.

nd2 ran loppm hippm

loppm hippm range of candidate frequencies in ppm (the amide
proton region for proteins)

nd2 nei number

number number of candidate neighbors to store

nd2 rto tolerance

tolerance root frequency tolerance-used in the algorithm to find
peaks within this limit

nd2 exe nosypk */patnum

nosypk executes the neighbor detection. The peak entity for a
2D NOE spectrum should be specified

*/patnum all patterns, or a specific pattern, for which the detection
should be carried out

nd3 — Neighbor detection in 3D NOESY spectrum

This command is used to find potential neighbor patterns for any or all pat-
terns. This requires a peak picked 3D NOESY spectrum such as 3D NOE-NOE
or 3D 15N-1H-HSQC-NOESY and its associated patterns. The nd3 command
reports and stores i - i + 1 neighbor probabilities.

nd3 met method

method neighbor finding method — 3D NOE-NOE spectrum (hom)
or 3D HSQC-NOE spectrum (het)

This command string defines the method for neighbor detection — namely
using homonuclear or heteronuclear spectrum.

nd3 tol tolerance

tolerance resonance collapse tolerance

This command string defines the frequency collapse tolerance, to judge
whether a candidate frequency is a new one.

nd3 noe noecon noepks

noecon minimum number of pattern frequencies with which a can-
didate must have NOE contacts

noepks minimum number of peaks (must be at least equal to the
number of contacts)

nd3 pat loppm hippm maxfrq

loppm hippm range of pattern frequencies to use in ppm. Only NOE's
with frequencies in this range are considered. For
proteins, this is the HA, HB region, possibly extended
with an amide proton.

maxfrq maximum number of frequencies to use for each pat-
tern

nd3 lev outlev

outlev level of output: 0 =silent, 1 = low, 2 = medium, 3 = high, 5 =
detailed

nd3 norm false/true

This command utilizes the normalize option, which normalizes the scores for
each pattern to one.

nd3 ran loppm hippm

loppm hippm range of candidate frequencies in ppm (the amide
proton region for proteins)

nd3 sto number

number number of candidate neighbors to store

nd3 rto tolerance

tolerance root frequency tolerance-used in the algorithm to find
peaks within this limit

nd3 seq loppm hippm

loppm hippm range of sequential frequencies in ppm — this is used
for 3D HSQC-NOE spectrum and this is the range of
the 15N frequencies

This command string defines the frequency range for the 15N resonances in
the pattern s in the case of heteronuclear neighbor detection.

nd3 rev t/f

vf look for reverse NOE contacts (true or false)
This command string defines whether the program should look for reverse
NOE contacts appearing in, e.g., 3D TOCSY-NOE spectra.

nd3 shi loppm hippm

loppm loppm resonance range for patterns when looking for reverse
NOE contacts

nd3 nsc score

score neighbor score

This command string defines the neighbor score option (values between 0 and
3), used when the reverse NOE-contact option is on.

nd3 nuc nucleusl nucleus2

nucleusl first nucleus
nucleus2 second nucleus

This command string defines the type of nuclei in the pattern to use if the
method is heteronuclear. You must define the nucleusl in accordance with the
range defined in command nd3 ran, and nucleus2 in accordance with nd3 seq.
For example in a 3D 15N-1H-HSQC-NOESY spectrum the nucleusl should be
set to H and the range should be defined through

nd3 ran 5.5 12.0

command for a protein and. The nucleus2 should be set to N and the range
should be defined through

nd3 seq 90.0 130.0

If a homonuclear spectrum is being used for neighbor detection, both nucleusl
and nucleus2 should be set to H.

nd3 cdm dimension

dimension candidate dimension

nd3 stm method

method neighbor storage method, overwrite old probabilities (0) or
add to the old ones (1)

nd3 exe nosypk */patnum

nosypk executes the neighbor detection. The peak entity for a 3D
NOE spectrum should be specified

*/patnum all patterns, or a specific pattern, for which the detection
should be carried out

nex — End of a loop

nex

nex defines the end for a for loop in macros. This command is only valid in
macros.

See also

for — Loop for macros\

no — Generate random noise

no amplitude

amplitude amplitude of noise

no adds random noise of specified amplitude to the data in the work space. The
amplitude distribution of the generated noise is normal (Gaussian) and its fre-
guency distribution is white.

Symbol dependence

datsiz Number of datapoints

nop — No operation

nop

nop performs no operation. A typical use of nop in macros involves execution
of commands that are stored in symbols. For example, you could save the cur-

rent window command in a symbol named window. If no window was used,
the window symbol could be set to nop, which would not modify data when
executed.

nor — Normalize data

nor data point new value

data point data point to normalize on
new value new value for this datapoint

nor normalizes the contents of the data in the work space so a specified point
defined by the data point parameter has a given value defined by the new value
parameter. This command is useful for comparing integrals and relative peak
heights in separate spectra.

np — Null plot

np

np generates a null plot containing axes (like ip and cp) for the current region,
but does not display any contours for data. np is very fast because it does not
read matrix data for display. The main use of np is to establish graphics context
without taking the time to draw a full plot. np is most often used prior to pick-
ing a large matrix to establish current plot context.

See also

cp — Contour plot

ip — Intensity plot

old — Recall old limits

old

old recalls the previous plot limits of 1D plots. If no previous plots were per-
formed, the old command displays the full size of the data. For N-dimensional
data, use lim -2.

Symbols changed

first First datapoint

last Last datapoint

opn — Open output file

opn extension file_name access_mode

extension file extension (determines file prefix)
file_name output file name

access_mode selects new file or appends to end of existing file: 0 =
open new file for output, 1 = open existing file for
appended output, 2 = open existing file for input

opn opens a file for output or input. The default extension is .mac, but other
extensions are valid as well. After opn has been used to create an output file
(access_mode=0), the put command may be used in macros to put records in this
file, which may contain any information you want. If the access_mode parame-
terissetto 1, any lines output by put will be appended to the end of an existing
file. If access_mode is set to 2, the rea command may be used to read an existing
file sequentially.

See also
put — Put record
cls — Close output file

rea — Read record from ASCI|I file

opt — FELIX option license inquiry or license checkin
and checkout

opt number symbol

number FELIX option humber: 1=2D, 2=ND, 3=Assign, 4=Model
symbol symbol to receive status: 0=Not licensed, 1=Licensed

opt gets the license status of any of the FELIX options. This command sets the
specified symbol symbol to one if the option is licensed, and to zero if the
option is not licensed to you.

To enable options that are not currently licensed, you will need a new feature
in your license file. To obtain this, contact Accelrys (see the FELIX Getting
Started document).

Licenses can be released or rerequested using the negative value for the number
variable. For example:
opt -3 isok

causes the Assign license to be released if one was used by the current pro-
gram (allowing other processes/users to use that feature), or alternatively
check out an Assign license if there is one available in the license file.

ord — Matrix dimension order

ord diml dim2 ... dimN

diml matrix dimension to plot along x
dim2 matrix dimension to plot along y

ord is used to define the graphic representation of a matrix subspace. The
default values for this command simply display the matrix dimensions in the
order D1=1 (x axis), D2=2 (y axis) and D3=3 (z axis). If you wish to display the
data transposed (i.e., the D2 dimension along the x axis instead of the y axis),
simply exchange the order of the indices using the dim1 and dim2 parameters.
For example, to display a 2D matrix transposed, enter ord 2 1. To list the cur-
rent matrix order, enter lim 0.

See also

lim — Matrix limits

ovc — Overlay contour plot

ovc (options)

With this command you can overlay several plots on top of each other in the

Assign module. Please note that, after overlaying plots, the active plot (i.e., the
one from which values can be extracted) is the last spectrum plotted. You can
overlay only contour plots.

These specific options must be executed before an overlay can be carried out

ovc clear

The clear option clears the overlay memory buffer; therefore anytime a new
combination of spectra is to be overlaid this command has to be executed.
ovc set spectrum_id

The set option specifies which spectrum from the database should be overlaid.
You have to call this command at least two times.

ovc connect spectrum_id dimension spectrum_id dimension

The connect option allows you to set, for two spectra, which dimensions
should be mutually connected after the ovc set command is executed. This is
particularly useful if you want to overlay 2D planes of 3D spectra.

ovc

Finally, calling the ovc command, with no options, draws the overlay plot.

pd2 — Prototype pattern detection in 2D

After cross peaks are picked, pd2 performs prototype pattern detection on
COSY, TOCSY, and NOESY type spectra for macromolecules, or performs pro-
totype pattern detection on COSY, TOCSY, HMQC, and HMBC type spectra
for small molecules.

pd2 seed d1lhigh dllow d2high d2low

This command is useful only for macromolecules.
dihigh dllow d2high d2low the seed area in ppm
pd2 exp dlhigh dllow d2high d2low

This command is useful only for macromolecules.

dihigh dllow d2high d2low the expansion areain ppm

pd2 tol tol tol2

tol resonance collapse tolerance in ppm

tol2 C-13resonance collapse tolerance in ppm. This is for small mol-
ecules only.

pd2 res rppmin rppmax lopmax resmax

This command is useful only for macromolecules.

repmin minimum number of frequencies to add per loop
rppmax maximum number of frequencies to add per loop
lopmax maximum number of expansion loops

resmax maximum number of frequencies in prototype pattern

pd2 rem logical

logical remove intra prototype pattern peaks: true or false
pd2 lev outlev

This command is useful only for macromolecules.

outlev output level (0 = quiet, 1 = low, 3 = high)
pd2 con cos contact2 contact3 contact4 contact5
pd2 con cot contact2 contact3 contact4 contact5

pd2 con ctn contact2 contact3 contact4 contactb

These command strings specify minimum numbers of contacts for COSY (cos),
COSY+TOCSY (cot), and COSY+TOCSY+NOESY (ctn) type calculations,
required for a frequency to be considered as a candidate, if the number of fre-
guencies in a prototype pattern is 2, 3, 4 or more. This command is useful only
for macromolecules.

pd2 nfi fltnum

This command is useful only for macromolecules.
fltnum number of ppm filters

pd2 fil number loppm# hippm# min# max#
This command is useful only for macromolecules.

number filter number to assign limits to
loppm# low ppm limit of filter #
hippm# high ppm limit of filter #

min# minimum number of frequencies within this filter in proto-
type pattern
max# maximum number of frequencies within this filter in proto-

type pattern
pd2 ent cos cosy peak entity

pd2 met cos

These command strings specify the COSY peak entity, and define the method
to be based on COSY spectrum.

pd2 ent toc tocsy peak entity

pd2 met toc

These command strings specify the TOCSY peak entity, and define the method
to be based on TOCSY spectrum.

pd2 ent toc tocsy peak entity
pd2 ent noe noesy peak entity

pd2 met tno

These command strings specify the TOCSY and NOESY peak entities, and
define the method to be based on TOCSY and NOESY spectra. This method is
only for macromolecules.

pd2 ent toc tocsy peak entity
pd2 ent cos cosy peak entity
pd2 ent noe noesy peak entity

pd2 met ctn

The above command strings specify the TOCSY, COSY, and NOESY peak enti-
ties, and define the method to be based on TOCSY, COSY and NOESY spectra.
This method is only for macromolecules.

pd2 ent hmqg hmqc peak entity
pd2 ent cos cosy peak entity

pd2 met qco

The above command strings specify the HMQC and COSY peak entities, and
define the method to be based on HMQC and COSY spectra. This method is
only for small molecules.

pd2 ent hmg hmqgc peak entity

pd2 ent toc tocsy peak entity

pd2 met qto
The above command strings specify the HMQC and TOCSY peak entities, and

define the method to be based on HMQC and TOCSY spectra. This method is
only for small molecules.

pd2 ent hmg hmqgc peak entity

pd2 ent cos cosy peak entity

pd2 ent toc tocsy peak entity

pd2 met qct
The above command strings specify the HMQC, COSY and TOCSY peak enti-

ties, and define the method to be based on the HMQC, COSY and TOCSY spec-
tra. This method is only for small molecules.

pd2 ent hmqg hmqgc peak entity

pd2 ent cos cosy peak entity

pd2 ent hmb hmbc peak entity

pd2 met qcb

The above command strings specify the HMQC, COSY and HMBC peak enti-
ties, and define the method to be based on HMQC, COSY and HMBC spectra.
This method is only for small molecules.

pd2 ent hmg hmqgc peak entity
pd2 ent toc tocsy peak entity
pd2 ent hmb hmbc peak entity

pd2 met qtb

The above command strings specify the HMQC, TOCSY and HMBC peak enti-
ties, and define the method to be based on HMQC, TOCSY and HMBC spectra.
This method is only for small molecules.

pd2 exe

This command string executes the pd2 command for macromolecules.

pd2 ana

This command string executes the pd2 command for small molecules.

Symbol dependence

rprent Prototype pattern entity

pd3 — Prototype pattern detection in 3D

pd3 performs prototype pattern detection on 3D homonuclear spectra (for
example, 3D TOCSY-TOCSY or 3D TOCSY-NOESY) or on 3D heteronuclear
spectra (3D 15N-1H HSQC-TOCSY, 2D 15N-1H-HSQC and 3D 15N-1H HSQC-
TOCSY, 3D HCCH-TOCSY), after cross peaks are picked:

pd3 seed dllow dlhigh d2low d2high d3low d3high

dihigh dllow d2high d2low d3high d3low the seed area in ppm
pd3 exp dllow dlhigh d2low d2high d3low d3high

d1lhigh dllow d2high d2low d3high d3low the expansion areain ppm
pd3 tol tol

tol resonance collapse tolerance in ppm

pd3 res rppmin rppmax lopmax resmax

repmin minimum number of frequencies to add per loop
rppmax maximum number of frequencies to add per loop
lopmax maximum number of expansion loops

resmax maximum number of frequencies in prototype pattern

pd3 rem logical

logical remove intra prototype pattern peaks: true or false

pd3 lev outlev

outlev output level (0 = quiet, 1 = low, 3 = high)
pd3 jco contact2 contact3 contact4 contactb

pd3 jno contact2 contact3 contact4 contact5

These command strings specify minimum numbers of contacts for J coupled
(jco), and J coupled+NOESY (jno) type calculations, required for a frequency
to be considered as a candidate, if the number of frequencies in a prototype
pattern is 2, 3, 4 or more.

pd3 nfi fltnum

fltnum number of ppm filters

pd3 fil number loppm# hippm# min# max#

number filter number to assign limits to
loppm# low ppm limit of filter #
hippm# high ppm limit of filter #

min# minimum number of frequencies within this filter in proto-
type pattern
max# maximum number of frequencies within this filter in proto-

type pattern

pd3 use usedl used2 used3

usedn which coordinate of the seed peak to use — usedn =0
means not to use this coordinate as a frequency in the pro-
totype pattern

For heteronuclear detection you usually need to use the HN and N frequencies
of the seed peaks.

pd3 uex usedl used?2 used3

usedn which coordinate of the expansion peak to use — usedn =0
means not to use this coordinate as a frequency in the pro-
totype pattern

For heteronuclear detection you usually need to use the aliphatic H frequen-
cies of the expansion peaks.

pd3 rot dimension

dimension root frequency dimension (usually the HN dimension)
necessary for heteronuclear detection methods: 3D
15N-1H HSQC-TOCSY, 2and 3D HCCH-TOCSY

pd3 met method

method 3D prototype pattern detection method — 3D homonu-
clear (hom), 3D 15N-1H HSQC-TOCSY (het), 2D 15N-1H
HSQC + 3D 15N-1H HSQC-TOCSY (hsq), 3D HCCH-TOCSY
(hch)

This command string specifies the method to base on the prototype pattern
detection.

pd3 exe peaktable (seed_peaks)

peaktable peak entity name to use for the prototype detection
seed_peak seed peak entity needed if the method is hsq

This command string executes the pd3 command.

Symbol dependence

rprent Prototype pattern entity

pen — Define a new colored pen

pen pennum R G B color_table_size

pen lets you add additional pens to FELIX. You give the RGB values that
define the color and the pen number you want to refer to this new color. Using
this command, you can build your own color ramps.

The color_table_size is an optional value that tells FELIX how big the color map
for your computer actually is.

On SGI computers running the GL version of FELIX, double buffer mode lim-
its the number of bitplanes to one half of the number you actually have. For
example, an 8-bitplane machine can only support 16 colors, while a 24-bitplane
machine can support 4096 colors.

pen read pennum ired igreen iblue

This returns the rgb values for the pen number in the ired, igreen, and iblue
symbols

ph — Phase correction

ph

ph performs a phase correction on the workspace based on the current values
of the reserved symbols for zero order phase correction (phase0) and first
order phase correction (phasel). The workspace must contain complex data in
order to perform phase correction.

Symbol dependence
datsiz Number of datapoints
datype Data type

phase0 Zero-order phase angle

phasel First-order phase angle

See also
aph — Autophase spectrum

rph — Real-time phase

pic — Peak pick and label

pic
pic picks peaks in a one- or multidimensional spectrum, generates a peak list,

and annotates the current display. The pic command behaves differently for
1D and 2D spectra.

For 1D spectra

pic entity pick_mode symbol

pic picks 1D peaks and stores them in the database entity.

entity database entity where 1D peaks are stored

pick_mode 0O=build new entity of all peaks in current display
1=append to existing entity all peaks in current display
2=append to existing entity using a crosshair cursor

3=append to existing entity multiple within rubber box
symbol number of picked peaks

The behavior of pic is controlled by pick_mode as follows:

pic can generate peak labels on a 1D spectrum. For this application, it is recom-
mended that you set the scale factor to 0.7, then draw (dr) the spectrum to get
some empty space at the top of your current drawing. pic will label the peaks
in either ppm or Hz depending on the current axis definition (set with the
axtype symbol), unless pkunit is set to a number other than zero. In addition,
pic will not pick any peaks smaller than the threshold value (thresh). If thresh
is zero, pic sets it to 0.25 times the biggest peak. If posneg is set to 1, pic picks
both positive and negative peaks.

Symbol dependence
axtype 1D axis type
pkunit Peak pick units
thresh Peak pick threshold

level Contour level

posneg Positive/negative peak switch

Symbols changed
picent Current peak pick entity

For ND Spectra

pic peak_style entity pick_mode symbol

pic peak_style entity pick_mode symmetry symbol

pic picks ND peaks and stores them in the database entity entity. The number
of peaks picked is returned in symbol. The peak shapes to search for is con-
trolled by peak_style as follows:

peak style 0O=positive peaks (NOESY and TOCSY)
1=absolute value (COSY anti-phase peaks
2=negative peaks
3=positive and negative peaks

When peak_style is set to one, the picker uses the values of the symbols absmgl
and absmgz? to define the x and y half widths (respectively) of a rectangle used

to better find the centers of multiplet cross peaks. Picking is actually done on
the convolution of the box with the absolute value of the spectrum, in effect
smearing out the fine structure of multiplets into a single fat positive peak. As
a rule of thumb, set absmgl and absmg2 to about the half width of an entire
multiplet cross peak in dimension 1 and dimension 2, respectively.

The mode of data storage is determined by pick_mode as follows:

pick_mode 0=build new entity of all peaks in the display
1=append to existing entity all picked peaks in the dis-
play
2=append to existing entity a single peak with the cur-
sor*

3=append to existing entity multiple peaks selected
using a rubber band cursor*

4=append to existing entity a single peak at the location
defined by the point (xOpnt, yOpnt)

5=append to existing entity multiple peaks in the box
defined by the two points (xOpnt, yOpnt) and (x1pnt,
ylpnt)

LWhen pick_mode is 2 or 3, the symmetry parameter controls picking of the symmetric
cross-diagonal peak as well. (0=no symmetric pick, 1=do symmetric pick)
Symbol dependence

level Contour level

hfwidl Minimum halfwidth of the peak in points along D1
hfwid2 Minimum halfwidth of the peak in points along D2
hfwid3 Minimum halfwidth of the peak in points along D3
hfwid4 Minimum halfwidth of the peak in points along D4
mxwidl Maximum halfwidth of the peak in points along D1
mxwid2 Maximum halfwidth of the peak in points along D2
mxwid3 Maximum halfwidth of the peak in points along D3
mxwid4 Maximum halfwidth of the peak in points along D4

maxmet Maximum definition method — center of gravity (0) or using singu-
lar-value decomposition (1)

fixwd1 Default halfwidth along D1 if halfwidth search failed
fixwd2 Default halfwidth along D2 if halfwidth search failed
fixwd3 Default halfwidth along D3 if halfwidth search failed
fixwd4 Default halfwidth along D4 if halfwidth search failed
xpklbl Label Peaks Switch

Symbols changed

pksent Current cross peak entity

piv — Set the pivot for phase correction

piv flag

piv displays (if flag = 1) a small red triangle under the 1D axis that shows the
pivot point for real-time phase correction. If flag = 0, it hides the pivot.

Symbol dependence

pivot The data point used as a pivot for phsae correction.

See also

rph — Real-time phase

pla — Redisplay 3D object

pla

pla redisplays a 3D object on a 3D display and allows you to manipulate it
using the standard 3D user interface. There must be a current 3D object for pla
to work.

pol — Polynomial baseline correction

pol order

order polynomial order (1-9)

pol corrects the baseline of the data in the work space using the current list of
baseline points. pol uses a polynomial of the specified order for the correction.
Baseline points may be defined automatically with the automatic baseline
points command (abq) or defined using bas.

pol uses the value of the interval width symbol (iwidth) to minimize the
effects of noise on the correction by averaging the points in the interval about
each baseline point (+/- iwidth points).

Symbol dependence

datsiz Number of datapoints

datype Data type

iwidth Interval width

See also
abl — Automatic baseline flattening
abg — Automatic selection of baseline points

bas — Baseline points manipulation

csp — Cubic spline baseline correction
flt — FLATT baseline flattening

pop — Pop the display stack

pop

pop causes the buffer stack head to be moved to the workspace and decreases
the value of the stack depth parameter (stack).

Symbol dependence

datsiz Number of Data Points

datype Data Type

Symbols changed
stack Stack depth

See also

Idb — Load buffer into work space

psh — Push the work space onto the buffer stack
stb — Store work space to buffer

xsh — Exchange stack head with work space

ppm — Convert Between points and PPM

ppm dim mode value symbol

dim dimension number, zero for 1D
mode O=points to ppm
1=ppm to points
2=points to Hz
3=Hz to points
value point or PPM value
symbol symbol name for converted value

ppm allows conversion between data point and ppm or Hz units for 1D data
or for any dimension of N-dimensional data. ppm uses the information
entered using ref (1D) or rmx (ND) and gives easy access to shift information.

prb — Residue type probability scoring

prb Cappm Cbppm (pattern#)

Cappm C chemical shift
Cbppm C chemical shift

pattern# pattern number to store the residue probabilities with, if
none is defined the probabilities will just printed out to the
output window

This command uses the Grzesiek-Bax method (Grzesiek and Bax 1993) to cal-
culate residue type probabilities from the C and C chemical shifts. This com-
mand either stores the result with the pattern if the pattern number (pattern) is
given, or prints out the result to the output window.

prf — Formatted print

prf format symboll ... symboln result

format FORTRAN-like format specifier

symbolIN symbols to print

result resulting symbol holding formatted text of previous vari-
ables

prf puts a format description (FORTRAN style) for printing variables (sym-
bols) into a string (symbol). For example:

prf ‘'il,1x,a5,1x,£7.3,1x, "This is the end"’ &myint
‘&mytext’ &myreal result

prints an integer, then text, then a real number, and then the quoted text to the
variable (symbol) result.

The allowed format directives are:
i integer
f float
e scientific notation float
a character string
X space
ttab

Note: Each variable in the list should have a specific
formatting statement. For example. you cannot use 2(f7.3) in
the format statement. You must instead use 7.3,f7.3.

ps — Power spectrum

ps

ps replaces the real part of the data in the workspace with [(real)2 + (imag)2],
or the power spectrum, and sets the imaginary part to the phase angle.

psa — Suggest assignment for a set of patterns

This command can be used to find potential matchings of patterns assigned to
residue types onto the sequence of an unbranched biomacromolecule. The
neighbor detection commands (nd2 or nd3 or the supported macros) and the
residue type identification command (prb or the supported macros) should be
run before using the psa command.

psa asn asspro neipro

asspro minimum assignment probability that a pattern should con-
sider

neipro minimum neighbor probability score of a pattern

psa lev outlev

outlev level of output (1 = low, 3 = medium, 5 = high, 9 = detailed,
100 = very detailed)

psa sto logical

logical whether to store assignment (true = store, false = print without
storing)

This command stores and sort assignments or prints them as they are deter-
mined.

psa res firres lasres minlen maxnas

firres first residue for which to generate assignments
lasres last residue for which to generate assignments
minlen minimum length of assighed stretches to report
maxnas maximum number of assignments to generate

psa pri maxpas
maxpas maximum number of assignments to print

psa rto rottol

rottol root frequency tolerance

psa exe stretch

This command string executes the psa command and stores the resulting
stretches in the stretch entity.

psh — Push the work space onto the buffer stack

psh

psh causes the contents of the data in the workspace to be pushed onto the
buffer stack. The stack depth symbol (stack) is incremented and the contents
of the data in the workspace remain unchanged. This command is useful for
saving some data temporarily, or for displaying more than one spectrum at a
time using the draw command (dr).

Symbol dependence

datsiz Number of datapoints
datype Data type

Symbols changed
stack Stack depth

See also:

Idb — Load buffer into work spacee

pop — Pop the display stack

stb — Store work space to buffer

xsh — Exchange stack head with work space

pso — Polynomial-based solvent suppression

pso window order
window number of points for window
order polynomial order for fit

pso removes a solvent signal from the time domain data. The solvent signal is
approximated by calculating the mean value of every window points and fit-
ting a polynomial of order order to the mean values. The resulting function is
subtracted from the time domain data in work. This command performs well
when the solvent frequency is close to zero.

Symbol dependence
datsiz Number of datapoints

datype Data type

See also
cnv — Time-domain convolution

Ips — Solvent suppression using linear prediction

puf — Formatted put

puf format symboll ... symboln
format FORTRAN-like format specifier
symbolIN symbols to print

puf takes a format description (FORTRAN style) for printing variables (sym-
bols) and stores it in a file which was opened previously by the opn command.
This command is similar to the put command but it allows formatting. For
example:

puf ‘'il,1x,a5,1x,£7.3,1x, "This is the end"’ &myint ‘&mytext’ &myreal

prints an integer, then a text, then a real number, and then the quoted text to
the previously opened file.

The allowed format directives are:
i integer
f float
e scientific notation float
a character string
X space
t tab

Note: Each variable in the list should have a specific
formatting statement. For example, you can not use 2(f7.3) in
the format statement. You must instead use f7.3,f7.3.

pur — Purge symbol table

pur symbol_list

symbol_list list of user defined symbols to be deleted

The pur command purges the symbol list, causing user-defined symbols to be
deleted. The symbol can be wildcarded:

pur abc*

which purges all variables having the first three letters "abc".

put — Put record

put text

text text to be written to file

put writes one line of text, defined by the parameter text, to the current output
file (opened using opn). put can be used only within macros, and is useful for
building new macros within a running macro. The text string will be subjected
to symbol value replacement. To prevent symbol substitution within the text,
precede the ampersand (&) with an exclamation point (!). The exclamation
point (!) will prevent symbol replacement due to the ampersand (&), and the
exclamation point (!) is then deleted from the output. Using the special string
%t within the text creates a tab within the file.

See also
opn — Open output file

cls — Close output file

pv — Put value

pVv point real_value imaginary_value

point data point to be changed
real_value real number value for the defined point
imaginary_value imaginary number value for the defined point

pVv puts the specified value into the specified data point in the work space. If
the point number is outside the range between 1 and the frame size (frsize), no
action is taken. If the work space is complex (datype=1), then imaginary_value
is put into the imaginary part of the work space point.

See also

gv — Get value

pxp — Automated peak assignment

This command can be used to automatically assign peaks after the spin sys-
tems are assigned to specific atoms.

pxp mul yesno (entity)

yesno do multiple assignment — yesno=1 or not yesno=0
entity multiple assignment peak entity — necessary if yesno=1

pxp lev outlev

outlev level of output (0 = quiet, 4= low, 6= high

pxp any enforce skipful skipmul

enforce whether or not to enforce distance cutoff in NOE assign-
ment (0 = enforce cutoff, 1= assigns clean peak even if
distance criteria was not met)

skipful skip previously singly assigned peaks (1) or reassign them,
too (0)

skipmul skip previously multiply assigned peaks (1) or reassign them,
too (0)

psa tau tauc cutoff specfrq tlleak unamb_dis

tauc correlation time in ns

cutoff cutoff distance in A

specfrq spectrometer frequency in MHz
tlleak tl leakage in 1/s

unamb_dis unambiguous distance cutoff in A

pXp exe entity

This command string executes the pxp peak autoassignment command using
the entity peak table.

gsb — Skewed sinebell window

gsb size shift skew

size window size
shift phase shift
skew skew parameter

gsb multiplies the data in the work space by a skewed (or weighted) sinebell
window. The skew, if less than one, skews the window to the left. If the skew is
greater than one, the window function is skewed to the right.

Symbol dependence

datsiz Number of datapoints

See also
sb — Sinebell window
ss — Sinebell squared window

gss — Skewed sinebell squared window

gss — Skewed sinebell squared window

gss size shift skew

size window size
shift phase shift
skew skew parameter

gss multiplies the data in the work space by a skewed (or weighted) sinebell
squared window. The skew, if less than one, skews the window to the left. If
skew is greater than one, the window function is skewed to the right.

See also
sb — Sinebell window
ss — Sinebell squared window

gss — Skewed sinebell squared window

ra — Read ASCII data

ra file_name

file_name name of ASCII file to be read (required)

rareads ASCII 1D data files produced by the write ASCII (wa) command. This
command provides you with a means of transferring data between unlike
hardware or different programs.

See also

wa — Write an ASCII data file

rb — Read Bruker file

rb file (process_#)

file name of the datafile to be read into FELIX

process_# optional parameter — specifies which pdata/process_#/
proc(n)s files to use. If omitted it will search in for pdata/
1... pdata/9 directories and whichever is found first will
use that.

rb reads an FID from file into the 1D work space. rb can read Bruker files writ-
ten on models AMX and newer. It is also important but not essential that the
acqus... and pdata/../procs... files are present together with the ser or fid file,
since the header parameters are read and used in FELIX.

Symbol dependence

frsize Frame size

Symbols changed

datsiz Number of datapoints
datype Data type

status Error status

axtype Axis type

refsh Reference shift

refpt Reference point

phase0 Zero-order phase angle
phasel First-order phase angle
sfreq Spectrometer frequency

swidth Spectrum width

See also

cl — Close a data file

re — Read a file (old format)

rn — Read file (new format)

rf — Read FELIX for Windows file
rv — Read Varian file

rj — Read JEOL file

ra— Read ASCII data

re — Read a file (old format)

re file_name

file_name name of datafile to be read into FELIX

re reads a data record from the specified file. The default file extension for the
read command is .dat, therefore the extension does not need to be entered
unless it differs from the default extension.

FELIX uses the same file type for 1D and 2D data. However, 2D datafiles con-
tain more than one record. The data will therefore be read sequentially by issu-
ing successive read (re) commands. To re-examine a data record after it has
been read, the close command (cl) must be used to close the current data file
and to re-position the record pointer to the beginning of the file.

Symbol dependence

frsize Frame size

Symbols changed

datsiz Number of datapoints

datype Data type

status Error status

axtype Axis type

refsh Reference shift

refpt Reference point

phase0 Zero-order phase angle
phasel First-order phase angle
sfreq Spectrometer frequency

swidth Spectrum width

See also

cl — Close a data file

re — Read a file (old format)

rn — Read file (new format)

rf — Read FELIX for Windows file
rv — Read Varian file

rj — Read JEOL file

ra— Read ASCII data

rea — Read record from ASCII file

rea
rea reads the next record from the current file opened using opn 2. The text of
the record will be placed in the meta-string "$str".

See also

opn — Open output file

cls — Close output file

sub — Sub-string extraction

rec — Rectangle annotation

rec x0y0 x1yl

x0 starting x coordinate for rectangle
yO0 starting y coordinate for rectangle
x1 ending x coordinate for rectangle
yl ending y coordinate for rectangle

rec draws a rectangle having opposite corners (x0,y0) and (x1,y1). The color of
the line is set by defining the symbol anncol. The coordinates may be specified
in a variety of units as specified by annunt.

Symbol dependence

anncol Annotation color

annunt Annotation units

See also
ann Annotate plot

lin Line annotation

red — Reduce complex to real

red

red reduces a complex spectrum to a real one by discarding the imaginary part
of the data in the workspace. The reduce command is used to convert a com-
plex spectrum to a real spectrum.

Symbol dependence
datsiz Number of datapoints

datype Data type

Symbols changed
datype Data type

See also

cpl — Real to complex

ref — Set shift reference

ref point shift

point point number to be referenced to
shift chemical shift of reference point

ref defines the shift reference for 1D spectra. You can also reference a spectrum
using the menus. For multidimensional spectra, use the rmx command.

Symbol dependence

axtype Axis type

Symbols changed

refpt Reference point

refsh Reference shift

ret — Macro subroutine return

ret

ret returns control from a called macro to the calling macro.

See also

cal — Macro call

exr — Execute a macro and return

rev — Reverse

rev

rev causes the data in the workspace to be reversed by swapping the data point
values of 1 and 1024; 2 and 1023; 3 and 1022; and so on. When using this com-
mand, it makes a difference whether the data in the workspace is real or com-
plex since, for the complex case, reversal will be pairwise.

Symbol dependence

datsiz Number of datapoints

rf — Read FELIX for Windows file

rf file_name

fle_name name of the FELIX for Windows datafile to be read into
FELIX

rf reads an FID from the FELIX for Windows file_name into the 1D work space.

Symbol dependence

frsize Frame size

Symbols changed

datsiz Number of datapoints
datype Data type

status Error status

axtype Axis type

refsh Reference shift

refpt Reference point

phase0 Zero-order phase angle
phasel First-order phase angle
sfreq Spectrometer frequency

swidth Spectrum width

See also

cl — Close a data file

re — Read a file (old format)

rn — Read file (new format)

rf — Read FELIX for Windows file
rv — Read Varian file

rj — Read JEOL file

ra— Read ASCII data

rft — Real Fourier transform

rft

rft assumes the contents of the work space to be real, and performs an in-place
real Fourier transform. rft turns a real vector of length datsiz into a complex
vector of length (datsiz/2).

Symbol dependence

datsiz Number of datapoints

datype Data type

Symbols changed
datsiz Number of datapoints

datype Data type

See also

ft — Fast Fourier transform

ift — Inverse Fourier transform
bft — Bruker-Fourier transform
hft — Hilbert transform

rj — Read JEOL file

rj file_name

file_name name of the JEOL datafile to be read into FELIX

rj reads an FID from the JEOL file_name into the 1D work space. rj can read
JEOL files collected with Alpha or Lambda systems.

Symbol dependence

frsize Frame size

Symbols changed

datsiz Number of datapoints
datype Data type

status Error status

axtype Axis type

refsh Reference shift

refpt Reference point

phase0 Zero-order phase angle
phasel First-order phase angle
sfreq Spectrometer frequency

swidth Spectrum width

See also

cl — Close a data file

re — Read afile (old format)

rn — Read file (new format)

rf — Read FELIX for Windows file
rv — Read Varian file

rj— Read JEOL file

ra— Read ASCII data

rm — Read macro

rm file_name

fle_name macro flename

rm reads the macro file defined by the file_name parameter into the macro work
space. All macros must have the default .mac extension. Once the macro is in
the macro work space, it can be executed (ex) or listed (Im).

Symbol dependence

macpfx Macro prefix

Symbols changed

macfil Current macro file

rmx — Reference matrix

rmx dim freq width axis refpt refval text

dim matrix dimension

freq observe frequency for this dimension
width spectral width for this dimension

axis axis type (same as axtype)

refpt reference point

refval reference shift for reference point
text axis label text

rmx sets shift reference information for one dimension of a matrix. This is sim-
ilar to the ref command used for 1D data. A matrix must be opened before ref-
erencing. The reference information is stored permanently in the matrix file.

rmx may also be used to extract reference information from a matrix by using
a negative dimension. The reference information corresponding to the above
usage of rmx is loaded into the user symbols sym1 through sym6.

rmx -dim syml sym2 sym3 sym4 sym5 sym6

rn — Read file (new format)

rn file_name

file_name name of the datafile to be read into FELIX

rn reads a file into the 1D work space. rn can read new format files written on
hardware with a different byte order and transferred over a network.

Symbol dependence

frsize Frame size

Symbols changed
datsiz Number of datapoints

datype Data type

status Error status

axtype Axis type

refsh Reference shift

refpt Reference point

phase0 Zero-order phase angle
phasel First-order phase angle
sfreq Spectrometer frequency

swidth Spectrum width

See also

cl — Close a data file

re — Read a file (old format)

rn — Read file (new format)

rf — Read FELIX for Windows file
rv — Read Varian file

rj — Read JEOL file

ra— Read ASCII data

roh — Real-time phase

reh

This command is obsolete in FELIX 2002. It has been replaced by macros that
use modeless control panels to realize real-time phasing. See macros such as
rtphase.mac and rtphase.mnu.

rpl — Real-time polynomial baseline correction

rpl order

This command is obsolete in FELIX 2002. has been replaced by macros that use
modeless control panels. See macro files rthasepoly.mac and rtbasepoly.mnu.

See also

pol — Polynomial baseline correction

rv — Read Varian file

rv file_name

fle_name name of the Varian datafile to be read into FELIX

rv reads an FID from the Varian file_name into the 1D work space. rv can read
Varian fid files together with the procpar file collected under VXNMR 5.0 or
newer.

Symbol dependence

frsize Frame size

Symbols changed

datsiz Number of datapoints
datype Data type

status Error status

axtype Axis type

refsh Reference shift

refpt Reference ppoint

phase0 Zero-order phase angle
phasel First-order phase angle
sfreq Spectrometer frequency

swidth Spectrum width

See also

cl — Close a data file

re — Read afile (old format)

rn — Read file (new format)

rf — Read FELIX for Windows file
rv — Read Varian file

rj— Read JEOL file

ra — Read ASCII data

sar — Autoscreen command

sar ini opt

sar exe speclD item symbol_score symbol_threshold

sar dsp matrix opt threshold

sar provides subcommands related to the Autoscreen module for SAR by
NMR. Execution of this set of commands requires the Autoscreen license.

ini

opt

exe
speclD
item
symbol_score
symbol_threshold

dsp

matrix
opt
threshold

Symbol dependence

Set up scoring parameters.

If opt = 1, discard previous results in score
matrix where scoring results are stored.
Otherwise, retain the previous score
matrix.

Score a selected test spectrum against
the control spectrum.

Experiment ID of the test spectrum.

Item number of the test spectrum in the
experiment entity in the database.

Symbol that returns the value of the score.

Symbol that returns the value of threshold
used to pick peaks in the test spectrum.

Cluster the experiments based on the dis-
placed peaks, to identify binding sub-
sites. sar dsp reorders the experiments
and their peaks in the score matrix, so
that experiments with the same group
of displacement peaks are grouped in
the same cluster, which can be viewed
by displaying the score matrix.

Filename of score matrix.
opt = 4; reserved for future development.

Minimum contribution of the peaks to be
clustered.

sar ini uses the values of these symbols:

pksent Entity name of the cross peaks in the database.

mindisl, maxdisl Lower and upper limits of peak displacementsin the D1 dimen-

son.

mindis2, maxdis2 Lower and upper limits of peak displacementsin the D2 dimen-

son.

hifac, n2hfac Scale factors for 1H and 1°N chemical shifts.
thrmet Options for threshold method.

sarntp Number of sample points used to determine threshold automatically.
thrval User-defined threshold.
xpktyp Selection mode for peak picking.

maxmet Local maximum method for peak picking.

widop Option on whether or not to use peak width when matching peaks.

hgtop Option on whether or not to use peak height when matching peaks.
sarmsh Minimum similarity in peak shape required to match peaks.

scomet Method for searching a best match between the test and control peaks.
sarcpu The maximum CPU time (in seconds) allowed for a depth-first search
ucpfit Option onwhether or not to fit unmatched control peaksto the test spectrum.
sar nmw Penalty of an unmatched control peak.

utpopt Selection method for unmatched test peaks

utpsgm Number of standard deviations tolerated when filtering unmatched test
peaks.

sarutp Penalty of an unmatched test peak.
scomat Filename of the score matrix.

scorent Entity name of the scores in the database.

sb — Sinebell window

sb size shift

size window size in complex points
shift phase shift in degrees

sb performs a sinebell multiplication of the data in the work space using a
function specified by the size and shift parameters. If no parameters are
entered, the global parameter size (datsiz) is substituted for the size parameter
and a phase shift of zero degrees is used. The sinebell window function yields
good results for absolute magnitude spectra.

Symbol dependence

datsiz Number of datapoints

See also
ss — Sinebell squared window
gsb — Skewed sinebell window

gss — Skewed sinebell squared window

sca — Scale factor for dimension

sca dimension scale_factor

sca is used to control the appearance of multidimensional data displays. For
example, if sca 2 3 is entered, all plots will display dimension 2 scaled three
times larger than normal. The default scale factor for all dimensions is one.

If the scale_factor is set to -1 then the plot is dynamically scaled, which means
that the aspect ratio is discarded, and the plot fills out the available frame.
sca -dimension scale_factor_variable

returns the current scaling in scale_factor_variable if the negative dimension is
used for the dimension.

seg — Integral segments

seg op arguments

op arguments action
add lowpt highpt adds one segment
show displays segments
zero zero or delete segment entity
normal lowpt highpt normalize segment value
value

seg controls the creation, scaling, and display of segmented integrals on 1D
spectra. The symbol segint switches on and off the automatic display of seg-
mented integrals on 1D plots. The segment definitions are stored in a DBA
entity named by the symbol

segent. Specifying lowpt as -1 enables a rubber band box cursor for adding and
normalizing segments.

Symbol dependence

segent Segments entity

sep — Separate real and imaginary

sep

sep converts data consisting of alternating real and imaginary parts into data
containing separate real and imaginary parts. All data within FELIX is pro-
cessed in alternating mode. sep is useful for recovering imaginary parts of
hyper-complex spectra for phasing after initial transformation. sep defines the
data type to real, (datype=0) and defines the data size to two times the number
of complex points.

Symbols changed
datsiz Number of datapoints

datype Data type

See also

alt — Alternating real/imaginary

set — Set work space to a value

set real imaginary

real value of real data
imaginary value of imaginary data (optional)

set simply assigns the specified value to all points in the work space. This com-
mand is useful for looking at the shape of window functions. For example, set
1 sets the data in the work space to one. The desired window commands can
then be issued, performing a window multiplication. The dr command can
then be issued to draw the applied function in the graphics display to see what
it looks like. If the work space is defined as being complex (datype=1), the set
command can be used to define a complex value by specifying both the real
and imaginary parameters.

Symbol dependence
datsiz Number of datapoints

datype Data type

shl — Shift left

shl points

points number of points to shift data left

shl shifts the data in the work space left by the number of points specified by
the points parameter. Data values of zero are added to all points that lie to the
right of the shift.

Symbol dependence

datsiz Number of datapoints

datype Data type

See also

shr — Shift right
ssh — Signed shift

csl — Circular shift left
csr — Circular shift right

csh — Circular signed shiftt

shr — Shift right

shr points

points number of points to shift data right

shr shifts the data in the work space right by the number of points specified by
the points parameter. Data values of zero are added to all points that lie to the
left of the shift.

Symbol dependence

datsiz Number of datapoints

datype Data type

See also

shr — Shift right

ssh — Signed shift

csl — Circular shift left
csr — Circular shift right

csh — Circular signed shiftt

smo — Binomial smooth

smo times

times number of times to smooth (optional, default=1)

smo performs a binomial smooth on the data in the work space by subjecting
the data to a three-point smooth with binomial weighting. smo 2 is equivalent
to a five-point binomial smooth while smo 3 is equivalent to a seven-point
binomial smooth, and so on. Repetitive binomial smoothing is, in the limit of
large numbers for the parameter times, equivalent to applying Gaussian con-
volution.

See also

flf — FaceLift baseline correction

sp — Stack plot

sp

sp produces a stack plot of the current region on the defined graphics device
(display or plotter). The command sp uses the reserved symbols deltax for
stack plot, deltay for stack plot, rowinc for row increment, and cutoff for peak
height cutoff. These symbols control the appearance of the plot. sp produces
plots that have a 3D appearance.

sp autoscales the peak heights. The autoscaling can be disabled by setting the
reserved symbol absint to one. In this case, sp uses the scaling factor calculated
for the most recent autoscaled cp, ip, or dr command.

Symbol dependence

deltax Delta X

deltay Delta Y

rowinc Row increment

bigpt biggest point

scale scale factor

Symbols changed
disply Current display type

sgz — Squeeze a matrix

sgz file threshold

sz compresses matrices so that any point whose value is less than threshold is
not included in the new squeezed matrix. Squeezed matrices are read-only, yet
it is possible to define reference information using rmx after squeezing.

srv — Set range to value

srv first last real imaginary

first first data point to set value for
last last data point to set value for
real real data value to be set for the range

imaginary imaginary value to be set for the range (optional)

srv can be used to set any range of the data in the work space to a single value.
Typically, the srv command is used to generate window functions that avoid
truncation errors while minimally altering spectral intensities. For example,
the following series of commands:

set 1

ss 100 90
shr 600
srv 1 600 1

defines a window equal to one for the first 600 points, which then drops
smoothly to zero from point 600 to point 700, as a 90 degree shift sinebell func-
tion.

Symbol dependence
datsiz Number of datapoints

datype Data type

See also

set — Set work space to a value

ss — Sinebell squared window

ss size shift
size window size in complex points
shift phase shift in degrees

ss performs a sinebell squared multiplication of the data in the work space
using the parameters specified by size and shift. If these parameters are not
entered, the global parameter data size (datsiz) with a phase shift of zero
degrees is used. The ss command is a very good window function for apodiz-
ing absolute magnitude spectra.

See also
sb — Sinebell window
gsb — Skewed sinebell window

gss — Skewed sinebell squared window

ssh — Signed shift

ssh nl n2 scale

nl first scaling point
n2 second scaling point
scale scale Factor for shift

ssh shifts the data in the work space to the left or right a certain number of
points specified by [n1 - n2]*scale. Negative values shift the spectrum left while
positive values shift the spectrum right. The ssh command can be used for tilt-

ing spectra where the scale parameter is usually set to the ratio of the wl to w2
digital resolution.

Symbol dependence

datsiz Number of datapoints

datype Data type

See also

shr — Shift right

ssh — Signed shift

csl — Circular shift left
csr — Circular shift right

csh — Circular signed shift

ssp — Synthesize spectrum from peak list

ssp peaks

peaks 1D peaks entity

ssp generates a synthetic spectrum from peak parameters in the peaks entity
peaks. The generated synthetic spectrum retains the data type (real or complex)
of the original data. This is useful following peak fitting (fit) to generate the
modeled spectrum.

Symbol dependence

datsiz Number of datapoints

datype Data type

See also

pic — Peak pick and label
fit — Fit 1D peaks

ste — Stella peak picker

ste peak_entity pick_mode

peak _entity peak entity where the picked peaks should be stored
pick_mode positive peaks (0), negative peaks (1) or both (2)

The ste command picks the peaks using example peaks in the xpk:example
entity. It uses the current matrix limits and the current contour threshold to
pick the peaks. The previous contents of the peak entity are preserved.

Symbol dependence
cosami minimum match factor
tresnb neighbor threshold

minbok minimum number of neighbor points within the search limits above
the threshold

locsizl search size from maximum along d1 in points
locsiz2 search size from maximum along d2 in points
locsiz3 search size from maximum along d3 in points
locsiz4 search size from maximum along d4 in points

maxmet method to locate the maximum (0=rough maximum, 1=interpolation,
2=center of gravity)

trsint peak box threshold
facint hump tolerance factor
nextra extra points to increase by the peak box

outlev output level (O=quiet, 1=low, 2=medium, 3=high)

stb — Store work space to buffer

stb buffer

buffer buffer number

stb copies the contents of the work space into the specified buffer. The previ-
ous contents of the buffer are overwritten during the write process. The data
in the work space and the stack depth parameter (stack) remain unchanged.
The stb command is useful for temporarily saving spectral data.

Symbol dependence

datsiz Number of datapoints

datype Data type

See also

psh — Push the work space onto the buffer stack
Idb — Load buffer into work space

pop — Pop the display stack

xsh — Exchange stack head with work space

sto — Store vector to matrix

sto diml dim2 dim3 ...

diml vector coordinate to be stored in D1 dimension
dim2 vector coordinate to be stored in D2 dimension
dim3 vector coordinate to be stored in D3 dimension

sto stores the work space to the specified vector in the matrix. For example, sto
0 1 stores to the vector along D1 that passes through point 1 of D2; and sto 1 0
stores to the vector along D2 that passes through point 1 of D1. sto must be
given exactly one parameter that is zero. You can think of the zero as specifying
the dimension along which the vector is loaded, and the other parameters
locating the vector position in all other dimensions.

Symbol dependence

datsiz Number of datapoints

datype Data type

See also

loa — Load vector from matrix

swh — Store work space to bundle

str — String manipulation operators

string the given character string to operate on
substring a second string to try to find in given string
matchstring a wildcard string to compare with given string
begin the first character wanted from given string
end the last character wanted from given string
symbol the symbol name to receive the result

word_symbol the base symbol name to receive string words
cnt_symbol the symbol name to receive the word count
delimiters extra characters that break a string into words

str provides a variety of string manipulation operators. As a group, these let
you perform almost any desired action involving character strings. To include
blank characters into a string, enclose it in single quotes.

For use with the rea command, string may always be the meta-string $str to
denote the line most recently read from an ASCII file.
str length string symbol

Return the length of the given string. The result is an integer greater than zero.

str sub string begin end symbol

Return a substring of the given string. Specify the first and last character loca-
tions wanted. The result is a string. This command is identical to SUB.

str index string substring symbol

Return the starting position in the given string where the first instance of the
substring was found. Returns zero if the substring was not present in the given
string. The result is an integer.

str match string matchstring symbol

Determines whether a wildcard string matches the given string. A valid wild-
card string is of the form: abc*, *abc, *abc*. The result is an integer, where: 0 =
not a match 1 = a match.

str parse string word_symbol cnt_symbol

Delimiters

Parse the given string into words, based on blanks and any other given delim-
iters. Each word in the string is stored in a symbol, and the total number of
words is stored in a symbol.

For example, the command line:
str parse ‘This is a string’ word count
yields the following symbols and symbol values:
count = 4 wordl = This word2 = is word3 = a word4 = string
Another example:
str parse (123.01,278.31) value count ().,
parses based on blanks and the extra delimiters ‘().,” to yield:
count = 4 valuel = 123 value2 = 01 value3 = 278 value4 = 31

Note that any ASCII characters may be used as delimiters. The blank is always
a delimiter.

str exact string matchstring symbol

Determines whether a string exactly matches the given string. The wildcards
(*) are taken literally. The result is an integer, where: 0 = notamatch 1 = a
match.

sub — Sub-string extraction

sub text begin end symbol

text text string from which to extract sub-string
begin first character of sub-string to be extracted
end last character of sub-string to be extracted

symbol symbol to receive the text sub-string

sub extracts a sub-string from the symbol text based on the symbols begin and
end and stores it into symbol. This command can be used after the rea command
to extract portions of text lines from an ASCI|I file. The meta-string $str is used
for text in this context.

See also

rea — Read record from ASCI|I file

swb — Store work space to bundle

swb

swhb stores the contents of the data in the workspace into the vector last
accessed by the load workspace from bundle command (Iwb). Before using the
swb command, you must use the bundle command (bun) to define the matrix
as a bundle of vectors along a specified dimension. swb must follow lwb, as
lwb increments the vector count in the matrix.

Symbol dependence

datsiz Number of datapoints

datype Data type

See also

bun — Set bundle mode

Iwb — Load work space from bundle

sys — Execute system commands

sys 'DOS_command’

Sys puts you in touch with the command interpreter of the operating system.
This command enables you to execute DOS commands with FELIX 2002. The
DOS_command must be single-quoted.

Note: Windows allows spaces in a file or folder name. To
avoid the potential problems caused by spaces in file or
folder names, you are advised to double-quote all symbols
that hold file or folder names, as in the examples below:

sys 'copy "&xxpath&xxfile" "&xxpath&yyfile"
sys 'del/f/q "&xxpath&xxfile"

For your convenience, the following new subcommands are
added to achieve the common file manipulations:

sys del ‘filename’

sys copy ‘from file’ ‘to file’
sys rename ‘'from file’ ’‘to_file’
sys type 'filename'

Since these subcommands are not executed through the DOS
command, the filenames must be single-quoted, not double-
quoted.

Executing a DOS command from FELIX opens an DOS window which is
closed upon the compeletion of the command. If you want to see the text dis-
played in the DOS window, you can do something like the following:

sys ’‘dir > temp.txt’
sys type temp.txt

The first command issues a DOS command dir and redirect the output to a file
temp.txt. The second command displays the content of temp.txt in the output
window of FELIX for your review.

tex — Text annotation

tex x0 y0 (z0 a0) (fix anchor) number text

x0 x dimension for placing text

y0 y dimension for placing text

z0 optional z dimension for placing text

a0 optional a dimension for placing text

fix scaling of text — fixed (0), according to Y size of plot (1),
according to X size of plot (2), according to both sizes (3)

anchor centering — left justify (0), center point (1), right justify (2)

number number of text characters

text text to be placed

tex draws text with its origin at the point (x0,y0) (optionally z0 and a0 if strip

plot of a 3D or 4D matrix). The size of the text is set by defining the text size
(annsiz) and the angle is set with the text angle symbol (annang). The color of
the line is defined with the text color symbol (anncol). All coordinates are nor-
malized device coordinates. tex can draw the full ASCII character set. How-

ever, you may not include the special characters "&" and ";" in the tex
command within a macro. For a Greek character, use the gre command.
Symbol dependence

anncol annotation color

annunt annotation units

annang annotation angle

annsiz annotation text size

slant annotation text slant

thick annotation text thickness

See also

ann — Annotate plot

gre — Greek text annotation

til — Tile plot

til allows 2D subspaces of N-dimensional data to be plotted in segmented tiles
with intervening data omitted. This permits detailed comparison of cross
peaks from several parts of the spectrum at once.

There are three methods for generating a tile display. You can tile a cross peak
and see all other peaks that align with the selected peak. You can tile a set of
spins, and see the spin system based on the assigned shifts. Lastly, you can tile
a pattern file containing pairs of atom names and see the spin system based on
the assigned shifts.

To build a tile entity automatically from one cross peak, use til make. To dis-
play the data in these tiles, use til on. To eliminate one row or column of tiles,
use til reduce. To return to normal non-tiled spectral displays, use til off. You
can generate any tile display you want by creating your own tile entity, then

turning tiles on and specifying the new tile entity.

til xpk tile_entity xpk_entity item# correlation tile_size

tile_entity DBA entity for storing tile set

xpk_entity cross peak entity defining selected cross peak

item# selected cross peak number in xpk_entity (-1 denotes
cursor select)

correlation correlation cutoff (0.0 to 1.0)

tile_size fixed size for each tile in points

To build a tile entity from a single cross peak use the peak item# as a center, and
find all peaks that overlap this peak in both dimensions. When correlation is
non-zero, eliminate those peaks whose line shape correlation with the speci-
fied peak is below correlation. Finally, make tile sesgments for each of these
peaks. Each segment is tile_size points in size, or sized to the peak footprint if
tile_size is zero. The tile segments are stored in the DBA entity tile_entity.

til atoms tile_ent spins spin_ent shift_ent tile_size

tile_ent DBA entity for storing tile set

spins specifies the set of spins to tile
spin_ent spins entity of all spins in the sample
shift_ent shift entity of shift for each spin
tile_size fixed size for each tile in points

The above example builds a tile based on an atom name. Use an atom name
specifier (may include *) to find all matching names in the spins entity that
have assigned shifts defined in the shift entity. Build tile segments from each
chemical shift for each of these spins. Each segment is tile_size points in size, or
will be sized to the line width of each spin if tile_size is zero. The tile segments
are stored in the DBA entity tile_ent.

til pattern tile_ent pat_file spin_ent shift_ent tile_size

tle_ent DBA entity for storing tile set
pat_file ASCIl pattern file

spin_ent spins entity of all spins in the sample
shift_ent shift entity of shift for each spin
tile_size fixed size for each tile in points

The above example builds a tile entity from a pattern file. This is very similar
to til atoms, except the spin names are extracted from an ASCII file that con-
tains two spin names per line. A typical pattern file can contain expected NOE
or J interactions between a set of spins, where each line specifies the names of
two spins expected to interact.

til off

til on tile_ent

tile_ent DBA entity for storing tile set
This operator turns tiling on and off. You can switch back and forth between a
normal contour plot and a tile plot based on a specified tile entity.

til overlap tile_ent

tle_ent DBA entity for storing tile set
overlap minimum overlap to consider
size tile size in points

overlap size

This operator combines overlapping tiles based on the overlap variable.

tle_ent DBA entity for storing tile set

til reduce tile_ent dimension point

The above example reduces a tile display by removing one tile segment from
one dimension. This has the effect of removing one entire row or column of
tiles from the display. If dimension is -1, then a crosshair cursor is enabled to
select the tile row or column to reduce by clicking on its axis label.

til strip tile_ent

tile_ent DBA entity for storing strip set

This operator allows you to make 2D strips from a 3D data set where each strip
can be taken from a different plane.

til who number

number DBA entity for storing strip set

This command allows you to query the cursor position with respect to a strip
plot — specifically, which strip plot the cursor pointed to.

Symbols changed
disply Current display type

tim — A basic clock and chronograph

tim op symbol (symbol2)

op one of the following operators
e — echo current time as HH:MM:SS
s — set symbol to seconds since midnight
b — both, same as e and s
z — zero chronograph, (i.e., start the stop watch)

r —read chronograph, sets symbol to number of seconds
since chronograph was zeroed

c — initializes CPU time chronograph

n —read CPU chronograph, sets symbols symbol to
elapsed time and symbol2 to CPU time

symbol symboltoreceive number of secondssetby op'ss, b,r,and
n

symbol2 symbol to receive number of CPU seconds set by op n

tim provides some basic timer abilities. Most notably, you can time long pro-
cessing macros.

tm — Trapezoidal multiplication

tm pl p2 p3

pl first point for window function (optional, default=1)
p2 second set of constant points for window function
p3 last point for window function (optional, default = datsiz)

tm multiplies the data in the work space by a trapezoidal window that rises
from zero at the first point up to one at p1, is equal to one from pl to p2, and
falls to zero from p2 to p3.

ty — Type text

ty text

text textto be written

ty types the one line of text that follows it. ty can be used only within macros,
and is useful for writing tutorial macros or for generating messages so you can
monitor the execution of a macro.

tyf — Type a file of text to the user

tyf file_name
file_name text file to type to user

tyf provides a way to put a large amount of text to the user with one command.

See also

ty — Type textt

tym — Type text to motif

tym text

text textto be written

tym displays a line of message on the status bar of the FELIX 2002 main win-
dow. It does not display the message in the text-port window. If you want to
prevent the message from being overwritten, you should also use the ty com-
mand to display it in the text-port window..

unf — Unfold work

unf

unf produces a symmetric vector in the workspace by creating the mirror
image of a spectrum and placing it on the right side of the current 1D vector.
The unf command is almost the inverse of the fold work command (fol). The
data size is doubled.

Symbol dependence

datsiz Number of datapoints

datype Data type

Symbols changed

datsiz Number of datapoints

ver — FELIX version number and release date

ver

Types the version number and release date to the text frame. The reserved
symbol, flxver, is set to the version number as an integer, i.e., 230 for version
2.3..

vol — Integrate cross peak volumes

vol peaks volumes slot ordinate

peaks DBA peak entity

volumes DBA volume entity

slot slot to store volumes

ordinate reference value for this slot (mixing time)

vol extracts volumes of each cross peak in the database entity peaks from the
current matrix. The footprint for each cross peak is stored in the DBA peak
entity. The vol command stores cross peak volumes into the specified slot of
the DBA volume entity. Volumes can be output in ASCII using standard DBA
capabilities, or used by the md (model data) command.

Symbol dependence
hafwid half width factor

wa — Write an ASCII data file

wa file_name

file_name name of file to be written (required)

wa will write an ASCII 1D data file to the disk with the specified name file_
name. The wa command is the easiest way to transfer spectra to an alien pro-
gram.

Symbol dependence
datsiz Number of datapoints

datype Data type

See also

ra— Read ASCII data

wr — Write a file (old format)

wn — Write a file (new format)

wai — Wait a while

wai time
time number of seconds to wait, which must be greater than zero

wai causes the program to wait for the specified number of seconds. The wai
command is useful for causing delays in tutorials and may also be used to
allow other users of your computer access to the processor while a multidi-
mensional transform is being performed.

wai -1 menufile

wai -1 menufile causes FELIX 2002 to pause the execution of the current macro
until a modeless dialog box (defined by a menu file "menufile™) is closed..

wm — Write macro

wm file_name
file_name name of macro file ((mac default extension)

wm writes the macro from the macro work space to a .mac file.

Symbol dependence

macpfx Macro prefix

See also

rm — Read macro

Im — List macro

wn — Write a file (new format)

wn file_name

whn writes the contents of the work space to the specified file name. Files writ-
ten using wn may be read after being transferred to hardware of differing byte
order. wn allows you to write multiple 1D vectors into one file.

Symbol dependence

datsiz Number of datapoints

datype Data type

See also

wr — Write a file (old format)

rn — Read file (new format)

wr — Write a file (old format)

wr file_name

wr writes the data in the current work space to a disk file with the specified
name file_name. Subsequently, the data file can be retrieved using the read file
command (re).

Symbol dependence

datsiz Number of datapoints

datype Data type

See also
wa — Write an ASCII data file
wn — Write a file (new format)

re — Read a file (old format)

xpa — Cross-peak assignments from shifts and spins

xpa peaks spins shifts

peaks cross peak entity
spins spins entity
shifts shifts entity

xpa uses information in the shifts and spins entities to generate parent names
in an existing cross peak entity. For each cross peak in the peaks entity, xpa
searches for the most appropriate parent with a shift defined in the shifts and
spins entities. The parent name from the spins entity will be added to the cross
peak entity as well as a spin pointer. If a parent name already exists in the cross
peak entity, the name will not be changed.

See also

Xps — Generate spins and shifts from cross peaks

Xpk — Cross-peak operations

xpk provides operators for adding, deleting, and manipulating cross peak
information stored in the database. Each operator acts on a single cross peak

item that may be specified explicitly by item number or by selecting a cross
peak using the crosshair cursor (item = -1). Each operator and its function are
described explicitly below.

Symbol dependence

hafwid cross peak half width factor

See also

xpl — Make a list of peaks
xpk who peaks d1_pt d2_pt ... symbol

xpk who peaks -1 symbol

peaks cross peak entity
dn_pt data point in dimension N
symbol symbol to receive chosen peak’ item number

This operation finds the single cross peak in the specified cross peak entity
peaks that is closest to the designated N-dimensional point location. Specifying
a D1 location of -1 enables a crosshair cursor that may be used to select a loca-
tion graphically. The selected point location must lie inside the cross peak foot-
print. The result stored in symbol is the item humber of the closest cross peak,
or zero if no peak footprint touches the specified location.

xpk add peaks

peaks cross peak entity

This operation allows you to manually add a single cross peak to the peaks
entity. xpk add enables a crosshair cursor which is then used to locate the cen-
ter of the desired cross peak, then a rubber box which is used to define the
shape of the desired footprint. In contrast with pic, this operator does not ref-
erence the data values, and allows you to define footprints in regions of noise
for the purpose of defining base intensities or noise levels. The new cross peak
footprint is displayed in red.

xpk delete peaks item

peaks cross peak entity
item item number (or -1 to use crosshair cursor)

xpk delete deletes a single peak item from the cross peak entity peaks. The
explicititem number may be specified or the peak may be selected graphically
by specifying an item number of -1. The deleted peak is then overdrawn in
black.

xpk edit peaks item symbol

peaks cross peak entity
item -1 (uses crosshair cursor)
symbol symbol to receive selected peaks item number

This operator allows you to edit a cross peak footprint in the peaks entity. A sin-
gle cross peak is selected by using the crosshair cursor. The selected cross peak
is displayed in green. The mouse is then used to edit the cross peak footprint
in one of two ways. The footprint center may be moved using a click-and-drag
of the mouse, while the size of the footprint remains the same. If the mouse
button is pressed near a cross peak corner, movement of the mouse adjusts the
size of the footprint in both dimensions. Both modes terminate when the
mouse button is released. The old footprint is then redrawn in black, and the
new footprint is drawn in red to show the edited result. The item number of
the selected peak (or zero if no peak is selected) is stored in symbol.

xpk hame peaks item dimen name

peaks cross peak entity

item item number (or -1 to use crosshair cursor)
dimen dimension for assignment

name cross peak parent name for specified dimension

xpk name inserts a cross peak parent name into the peaks entity. The cross peak
may be selected explicitly by item number or graphically using a crosshair cur-
sor if item is -1. The parent name should obey a nomenclature which is consis-
tent with all structures and assignment libraries. The name null is used to
indicate an unknown parent.

xpk volume peaks item symboll symbol2

peaks cross peak entity

item item number (or -1 to use crosshair cursor)
symboll symbol to receive peak’ volume

symbol2 symbol to receive peak item number

This operator integrates the intensity within the cross peak footprint. The cross
peak may be selected explicitly by item number or graphically using a
crosshair cursor if item is -1. The intensity of each data point within the cross
peak footprint is summed and returned in symboll. The item number of the
selected peak is returned in symbol2 (zero if no peak was selected).

Xpk correlate peaks item1l item2 mode symbol

peaks cross peak entity
iteml item number for cross peak 1 (or -1 to use crosshair cursor)
item2 item number for cross peak 2 (or -1 to use crosshair cursor)

mode correlation mode: 1=correlate projected line shapes of
actual data, 2=correlate footprint alignment only

symbol symbol to receive correlation coefficient between two
peaks

xpk correlate calculates a correlation coefficient between two cross peaks
based on either line shape projections or position. The dimension along which
the correlation is calculated is automatically chosen to be the dimension along
which the peaks are closest. The result will be in the range 0.0 to 1.0, with zero
indicating no correlation and one indicating perfect correlation.

xpl — Make a list of peaks

xpl provides operators for creating item lists of cross peaks. For general infor-
mation about lists, see Chapter 6, The Database and Tables. Each of the following
operators can be constructed from a set of DBA list commands and a small
macro, but they are provided in the xpl form for simplicity and faster execu-
tion when dealing with lists of cross peaks.

Symbol dependence

hafwid cross peak half width factor

frsize frame size (biggest list size)

nframe number of buffers (number of lists)

See also

cfg — Configure memory
dba — Database facility

xpk — Cross-peak operations
xpl box list# peaks lol hil ... loN hiN symbol
xpl box list# peaks -1 symbol

xpl box list# peaks 0 symbol

list# buffer number to store item list

peaks cross peak entity

IoN low limit in points for each dimension
hiN high limit in points for each dimension

symbol symbol to receive number of items in list

xpl box makes a list of all peaks inside an N-dimensional box. The center point
of a peak must be within the specified box for the cross peak to be added to the
list. The first form of this operator uses explicit low and high limits for all
matrix dimensions to define the N-dimensional box. If lol is zero, the current
plot limits are used to define the box. If lol is -1, a rubber box cursor is enabled
allowing you to define the box graphically. The number of cross peaks selected
for the list is returned in symbol.

Xpl touch_box list# peaks lol hil ... loN hiN symbol
Xpl touch_box list# peaks -1 symbol

xpl touch_box list# peaks 0 symbol

list# buffer number to store item list
peaks cross peak entity
lo_pt low limit in points for each dimension

hi_pt high limit in points for each dimension

symbol symbol to receive number of items in list

xpl touch_box makes a list of all peaks inside an N-dimensional box. Any por-
tion of a peak must be within the specified box for the cross peak to be added
to the list. The first form of this operator uses explicit low and high limits for
all matrix dimensions to define the N-dimensional box. If lol is zero, the cur-
rent plot limits are used to define the box. If lol is -1, a rubber box cursor is
enabled allowing you to define the box graphically. The number of cross peaks
selected for the list is returned in symbol.

xpl inside_box list# peaks lol hil ... loN hiN symbol
xpl inside_box list# peaks -1 symbol

xpl inside_box list# peaks 0 symbol

list# buffer number to store item list

peaks cross peak entity

lo_pt low limit in points for each dimension
hi_pt high limit in points for each dimension

symbol symbol to receive number of items in list

xpl inside_box makes a list of all peaks inside an N-dimensional box. The
entire footprint of a peak must be within the specified box for the cross peak to
be added to the list. The first form of this operator uses explicit low and high
limits for all matrix dimensions to define the N-dimensional box. If lol is zero,
the current plot limits are used to define the box. If lol is -1, a rubber box cursor
is enabled allowing you to define the box graphically. The number of cross
peaks selected for the list is returned in symbol.

xpl point list# peaks ptl ... ptN symbol

xpl point list# peaks -1 symbol

list# buffer number to store item list
peaks cross peak entity
ptN point along dimension N

symbol symbol to receive number of items in list

This operator builds a list of all peaks that touch an N-dimensional point. The
peak footprint must include the specified point to be included in the list. The
first form of the operator specifies explicit data points in all dimensions. Alter-
natively, if ptl is -1, a crosshair cursor is enabled allowing you to specify the
point graphically. The number of selected peaks is returned in symbol.

xpl line list# peaks dimen pt symbol
xpl line list# peaks -1 symbol

xpl line list# peaks 0 pt symbol

list# buffer number to store item list
peaks cross peak entity
dimen dimension to specify subspace

pt point along dimension dimen
symbol symbol to receive number of items in list

xpl line builds a list of all cross peaks that touch a specified line. A line is
defined in this context as an (N - 1) dimensional subspace of the matrix. This
would be a line in a 2D matrix, a plane in a 3D matrix, and a rectangular prism
in a 4D matrix. All cross peaks that touch point pt along dimension dimen are
included in the specified list. The first form of the line operator specifies an
explicit dimension and point. The second form specifies a single point, and
selects cross peaks that touch that point along any dimension. Alternatively,
you can specify dimen as -1 to enable a crosshair cursor and select the point
graphically. In this case cross peaks are selected that touch either line of the
crosshair cursor. The number of selected peaks is returned in symbol.

xpl range list# peaks dimen lo_pt hi_pt symbol

list# buffer number to store item list

peaks cross peak entity

dimen dimension along which to specify range
lo_pt low point along dimension dimen

hi_pt high point along dimension dimen
symbol symbol to receive number of items in list

This operator builds a list of all cross peaks whose centers lie within the spec-
ified range between lo_pt and hi_pt along the selected dimension dimen. The
number of selected peaks is returned in symbol.

xpl name list# peaks dimen name symbol

xpl name list# peaks 0 name symbol

list# buffer number to store item list

peaks cross peak entity

dimen dimension along which to specify range
name parent name along dimension dimen
symbol symbol to receive number of items in list

xpl name builds a list of all cross peaks whose parent name along dimension
dimen matches name. If dimen is zero, the list will include any cross peak having
a parent matching name along any dimension. A wild card (*) may be used in
name to select partially defined parents.

xpl freq list# peaks dim freq_list resolution symbol

xpl freq list# peaks 0 freq_list resolution symbol

xpl freq list# peaks -1 freq_list# resolution symbol

list# buffer number to store list
peaks cross peak entity
dim dimension to search

freq_list# one of the frequency lists
resolution +/-in ppm about each frequency
symbol symbol to receive number of items in list

This subcommand makes a list of peaks that align with a frequency list. Each
peak in the list will have its center in that dimension within resolution of a fre-
quency in that frequency list.

Using a dim of zero will give all peaks that align with a frequency in any dimen-
sion; while a dim of minus one will give only the peaks that align with a fre-
quency in all dimensions.

The number of peaks in the list is returned in symbol.

xpl pattern list# peaks dim pattern_# resolution spectrum_id symbol

list# buffer number to store list

peaks cross peak entity

dim dimension to search

pattern_# one pattern in Assign database

resolution +/- in ppm about each frequency

spectrum_id spectrum-specific shifts or generic shifts (0) to use from
pattern

symbol symbol to receive number of items in list

This subcommand makes a list of peaks that align with the frequencies of a
pattern from the Assign database. Each peak in the list has its center in that
dimension within resolution of a frequency in that pattern. You can use either
generic shifts of the frequencies (spectrum_id = 0) or a specific spectrum’s shifts.

Using a dim of zero will give all peaks that align with a frequency in any dimen-
sion; while a dim of minus one will give only the peaks that align with a fre-
guency in all dimensions.

The number of peaks in the list is returned in symbol.

xpl proto list# peaks dim proto_# resolution symbol

list# buffer number to store list

peaks cross peak entity

dim dimension to search

proto_# one pattern in Assign database
resolution +/-in ppm about each frequency
symbol symbol to receive number of items in list

This subcommand makes a list of peaks that align with the frequencies of a
protopattern from the Assign database. Each peak in the list will have its center
in that dimension within resolution of a frequency in that protopattern.

Using a dim of 0 gives all peaks that align with a frequency in any dimension;
while a dim of -1 gives only the peaks that align with a frequency in all dimen-
sions.

The number of peaks in the list is returned in symbol.

xpl clipboard list# peaks dim resolution symbol

list# buffer number to store list
peaks cross peak entity
dim dimension to search

resolution +/-in ppm about each frequency

symbol symbol to receive number of items in list

This subcommand makes a list of peaks that align with the frequencies of the
frequency clipboard in the Assign database. Each peak in the list will have its
center in that dimension within resolution of a frequency in the clipboard.

Using a dim of 0 gives all peaks that align with a frequency in any dimension;
while a dim of -1 gives only the peaks that align with a frequency in all dimen-
sions.

The number of peaks in the list is returned in symbol.

xpl pt list# peaks dim assignment_pointer symbol

list# buffer number to store list

peaks cross peak entity

dim dimension to search

asg_ptr assignment pointer

symbol symbol to receive number of items in list

This subcommand makes a list of peaks that have their assignment pointers
identical to the target assignment_pointer in the required dimension.

Using a dim of 0 gives all peaks that have that pointer in any dimension; while
adim of -1 gives only the peaks that have that pointer in all dimensions.

The number of peaks in the list is returned in symbol.
xpl pb list# peaks loppm1 hippml ... loppmN hippmN symbol

xpl box list# peaks 0 symbol

list# buffer number to store item list

peaks cross peak entity

loppmN low limit in ppm for each dimension
hippmN high limit in ppm for each dimension
symbol symbol to receive number of items in list

xpl pb makes a list of all peaks inside an N-dimensional box defined in ppm.
The center point of a peak must be within the specified box for the cross peak
to be added to the list. It is necessary to define the explicit low and high limits
in ppm for all matrix dimensions to define the N-dimensional box.The number
of cross peaks selected for the list is returned in symbol.

xpl tp list# peaks loppm1 hippml ... loppmN hippmN symbol

list# buffer number to store item list

peaks cross peak entity

loppmN low limit in ppm for each dimension
hippmN high limit in ppm for each dimension
symbol symbol to receive number of items in list

xpl tp makes a list of all peaks inside an N-dimensional box defined in ppm.
Any portion of a peak must be within the specified box for the cross peak to be
added to the list. It is necessary to define the explicit low and high limits in
ppm for all matrix dimensions to define the N-dimensional box. The number
of cross peaks selected for the list is returned in symbol.

xpl ip list# peaks loppm1 hippml ... loppmN hippmN symbol

list# buffer number to store item list

peaks cross peak entity

loppmN low limit in ppm for each dimension
hippmN high limit in ppm for each dimension
symbol symbol to receive number of items in list

xpl ip makes a list of all peaks inside an N-dimensional box defined in ppm.
The entire footprint of a peak must be within the specified box for the cross
peak to be added to the list. It is necessary to define the explicit low and high
limits in ppm for all matrix dimensions to define the N-dimensional box.The
number of cross peaks selected for the list is returned in symbol.

xpl pp list# peaks ppm1l ... ppmN symbol

list# buffer number to store item list

peaks cross peak entity

ppmN ppm value along dimension N

symbol symbol to receive number of items in list

This operator builds a list of all peaks that touch an N-dimensional point
defined in ppm. The peak footprint must include the specified point to be
included in the list. It is necessary to define explicit data points in ppm in all
dimensions. The number of selected peaks is returned in symbol.

xpl pl list# peaks dimen ppm symbol

list# buffer number to store item list

peaks cross peak entity

dimen dimension to specify subspace

pppm ppm value along dimension dimen
symbol symbol to receive number of items in list

xpl pl builds a list of all cross peaks that touch a specified line. A line is defined
in this context as an (N - 1) dimensional subspace of the matrix. This would be
aline in a 2D matrix, a plane in a 3D matrix, and a rectangular prism in a 4D
matrix. All cross peaks that touch point ppm along dimension dimen are
included in the specified list. It is necessary to define explicit dimension and
point in ppm. The number of selected peaks is returned in symbol.

xpl pr list# peaks dimen loppm hippm symbol

list# buffer number to store item list

peaks cross peak entity

dimen dimension along which to specify range
loppm low ppm along dimension dimen

hippm high ppm along dimension dimen
symbol symbol to receive number of items in list

This operator builds a list of all cross peaks whose centers lie within the spec-
ified range between loppm and hippm along the selected dimension dimen. The
number of selected peaks is returned in symbol.

See also

fli — Frequency list manipulation

Xps — Generate spins and shifts from cross peaks

Xps peaks spins shifts mode

mode new/append switch: O=build new spins and shifts entities,
1=append to existing spins and shifts entities

The xps command provides a mechanism to build spin and shift entities from
cross peak parent assignments contained in the cross peak entity. The cross
peak entity allows two different ways of assigning a parent. One simply
involves entering a text parent name into the cross peak item defining a parent
along a given dimension. The other involves setting a parent pointer that refers
to an item in a spin’s or parent’s entity. The pointer mechanism is favored for
assignment purposes, since the parent name actually only occurs in one place,
and points to all its cross peak "children" in all experiments.

Since spin and shift entities are required for back calculation, this command
allows you to generate these entities from a cross peak entity with explicit par-
ent names. For each unique parent name in the specified peaks entity, xps will
add this name to the spins entity and the shift and line width information to the
shifts entity. If the same parent name occurs in more than one cross peak, the
shift and line width information from all cross peak children of that parent are
averaged together. Any significant discrepancies are reported, allowing you to
screen these for possible mis-assignments.

See also
bck — Back-calculate NOE intensities

xpa — Cross-peak assignments from shifts and spins

xsh — Exchange stack head with work space

xsh

xsh exchanges the data in the work space with the buffer stack head. The xsh
command reverses the position of the lower two plots drawn with the draw
command (dr).

Symbol dependence

datsiz number of datapoints

datype data type

stack stack depth

See also

Idb — Load buffer into work space

stb — Store work space to buffer
pop — Pop the display stack

psh — Push the work space onto the buffer stack

xss — Simulated annealing assignment functions

xss build method experimentl (experiment2 (experiment3)) spins_
system_# (occurance) remove_intraspin_peaks iteration std_dev (htol)
(ctol) output

xss pattern first_residue last_residue min_score discard store temp_fact
iter_fact seq_fact output

The simulated annealing assignment commands consist of functions that: 1)
find spin systems (prototype patterns) in TOCSY and optionally COSY and
optionally 1H-13C-HSQC cross peak sets using simulated annealing algo-
rithm, 2) fit spin systems (patterns) with residue probabilities and neighbor
probabilities to the sequence using simulated annealing.

xss build method experimentl (experiment2 (experiment3)) spin_
system_# (occurance) remove iteration std_dev (htol) (ctol) output

method type of the protopattern search — TOCSY only (0),
TOCSY and COSY (1), TOCSY and COSY and 1H-13C-
HSQC (2)

experimentl number of TOCSY experiment in the assignment
project

experiment2 optional parameter — number of COSY experiment in
the assignment project — necessary if method=1 or
method=2

experiment3 optional parameter —number of 1H-13C-HSQC exper-
iment in the assignment project — necessary if
method=2

spin_system_# spin system type number — from the residue type
entity (reg:rseq), if spin_system_#=0, search for all spin
systems

occurance number of spin systems to look for if a particular spin
system type is selected by spin_system_#, should not
be present if spin_system_#=0

remove remove intraspin system peaks from consideration —
remove = 1 or use all peaks for prototype pattern
detection —remove =0

iteration number of iterations

std_dev maximum number of standard deviation to use from
spin system chemical shift table

htol interspectral tolerance between TOCSY and COSY

spectra, required if method =1 or 2, should not be
present if method =0

ctol interspectral tolerance between TOCSY and 1H-13C-
HSQC spectra, required if method = 2, should not be
present if method =0 or 1

output output level — quiet (0), low (1), medium (2) or high (3)

The command finds specified spin systems or all spin systems (spin_system_
#=0) in TOCSY, combined TOCSY and COSY, or combined TOCSY, COSY, and
1H-13C-HSQC spectra, using simulated annealing. This command can be used
only within the Assign modaule, since it needs entities built by the Assign setup
— project entity, prototype pattern entity, residue list and all the used experi-
ments with their peaks picked.

You must supply the numbers of the experiments from the project entity. The
resulting spin systems are stored in the prototype pattern entity.

This search should begin with the longest spin systems. As the algorithm tries
to fit peaks into a defined motif, it will not take care of possible additional cor-
related frequencies, which means that an AMX portion of a long spin system
could be assigned to a four-spin system. Initially, the program should be run
on the whole residue set of the primary sequence (which will automatically
take into account the above-mentioned priorities) and on the patterns exam-
ined with the usual interactive tools, then rerun on specific missing amino-acid
types. To compensate for the limited number of iterations in the simulated
annealing, the process should be run for several loops (typically 6), from
among which the program will retain the best results. One loop of the program
for the whole sequence of a 53 residue protein requires about ten minutes of
computation time on an R4000 Silicon Graphics Indigo workstation. For aro-
matic residues, this method assigns only the AMX subsystems, therefore the
aromatic resonances should be found with the systematic search method and
added through the clipboard.

Xss pattern first_residue# last_residue# min_score discard store temp_
fact iter_fact seq_fact output

first_residue# first residue in the sequence to consider for fitting
last_residue# last residue in the sequence to consider for fitting

min_score minimum residue type score to consider in the pat-
tern

discard discard previous assignments (0) or use it (1)

store store the result of the sequential assignment in the

pattern as a comment (1) or just print it to the out-
put window (0)

temp_factor initial temperature adjustment factor (between 0.1

and 10)
iter_factor iteration adjustment factor (between 0.1 and 10)
seq_factor neighbor probability/residue type probability

weighting factor — relative weighting of neighbor
probability vs residue type

output output level — quiet (0), low (1), medium (2) or high
3)

This command can be run on any set of homonuclear or heteronuclear patterns
(spin systems). It uses only the type and neighbors scores, obtained by any
method, to find the sequence-specific assignment via simulated annealing
optimization. Optionally, previous assignments are loaded and respected. The
amino-acid type and/or residue number are considered assigned for a pattern
if they are consistent over all frequencies of the pattern (unique or specified
assignments).

After careful inspection of the patterns and scoring of types and neighbors, the
process might be run on the full sequence. Then you might inspect the result,

modify it, perhaps try another run, and identify some satisfactory parts from
the scores listed. You should then discard the ambiguous assignments and
rerun the program with the correct residues used as anchor points. If several
such iterative processes still fail to determine unambiguously the complete
assignment, then some additional information should be input, like a more
accurate scoring or some new patterns.

The results are stored in assignment pointers for all frequencies of the patterns
(and set as the current specified frequencies). Note that there should not be any
residue named "null” in the molecule, else its assignment will be discarded.

Optionally, some parameters of the simulated annealing might be adjusted
(scaled by a factor of 0.1 to 10) according to the complexity of the problem:

temp_factor, iter_factor: if most parts of the sequence are well defined these
parameters can be decreased to speed up the program.

seq_factor: weight is accorded to the neighbors information, relative to the
spin system fit scores.

xyl — Atom list manipulation

The xyl command makes a database list of atom item numbers or frequencies
based on specific selection criteria. The subcommands dealing with frequen-
cies or patterns can be only used in conjunction with the Assign module (xyl
frequency, xyl pattern, xyl shift, xyl multiple, xyl fp)

See also

Xxyz — Atom manipulation

Xyl neighbors atom radius others list# symbol

atom atom defining center of a neighborhood (this may be an
atom name, an item number, or -1 to select using the
cursor)

radius neighborhood radius in Angstroms

others name match string to limit neighborhood selection
list# buffer number to receive the selected atoms
symbol symbol to receive number of atoms in list

xyl neighbors builds a list of atoms within a specified distance of a single
atom. The list may be filtered based on a match with the string other, which
may contain a wild card (*). The number of selected atoms is deposited in sym-
bol.

xyl name atom list# symbol

atom atom name match string to define selection criteria
list# buffer number to receive the selected atoms
symbol symbol to receive number of atoms in list

xyl name builds a list of atoms matching the string atoms, which may contain
awild card (*). The number of atoms selected is deposited in symbol.

Xyl atom atom radius others type list# symbol

atom atom defining center of a neighborhood (this may be an
atom name, an item number, or -1 to select using the
cursor)

radius neighborhood radius in Angstroms

others name match string to limit neighborhood selection
type type of atoms: 0 all, 1 assighed, 2 unassigned

list# buffer number to receive the selected atoms
symbol symbol to receive number of atoms in list

xyl atom builds a list of atoms within a specified distance of a single atom. The
list may be filtered based on a match with the string other, which may contain
awild card (*). Also you can specify type, whether any atoms matching the

above two criteria are to be collected to this list, or you need only assigned or
only unassigned atoms. The number of selected atoms is deposited in symbol.

xyl frequency atom list# symbol

atom atom name match string to define selection criteria
list# buffer number to receive the selected frequencies
symbol symbol to receive number of frequencies in list

xyl frequency builds a list of assigned frequencies from the Assign database
whose assignments match exactly the string atom, which may contain a wild
card (*) for pseudoatoms. The number of frequencies selected is deposited in
symbol.

xyl pattern atom list# symbol

atom atom name match string to define selection criteria
list# buffer number to receive the selected patterns
symbol symbol to receive number of frequencies in list

xyl pattern builds a list of assigned patterns from the Assign database, whose
assignments match the string atom, which may contain a wild card (*). The
number of patterns selected is deposited in symbol.

xyl shift center delta spectrum_id list# symbol

center center of the search in ppm

delta tolerance in ppm

spectrum_id generic shifts (0) or spectrum specific shifts to be
searched

list# buffer number to receive the frequencies

symbol symbol to receive number of frequencies in list

xyl shift builds a list of singly assigned frequencies from the Assign database,
within a range delta from a specified center. You have to specify whether the

generic shifts or spectrum-specific shifts of the frequencies are to be compared
with the target shift. The number of selected frequencies is deposited in symbol.

xyl multiply center delta spectrum_id list# symbol

center center of the search in ppm
delta tolerance in ppm

spectrum_id generic shifts (0) or spectrum specific shifts to be

searched
list# buffer number to receive the frequencies
symbol symbol to receive number of frequencies in list

xyl multiply builds a list of multiply-assigned frequencies from the Assign
database within a range delta from a specified center. You have to specify
whether the generic shifts or spectrum-specific shifts of the frequencies are to
be compared with the target shift. The number of selected frequencies is
deposited in symbol.

xyl fp frequency list# symbol

frequency frequency number to define selection criteria
list# buffer number to receive the selected frequencies
symbol symbol to receive number of frequencies in list

xyl fp builds a list of patterns from the Assign database which contains the tar-
get frequency. The number of patterns selected (usually one) is deposited in
symbol.

xyp — X,Y data pair manipulation

In addition to real and complex data, FELIX supports yet another data type,
namely (x,y) pairs of data. Each data point is actually stored as a triplet and
consists of an abscissa (x), an ordinate (y), and a sigma or error term for y.

These lists of (x,y) pairs can be displayed using the dr command, saved and
retrieved from buffers, edited to add and delete points, written to and read
from files, and fitted to a variety of functions to yield model parameters. The
reserved symbol linpts specifies the style in which the data is displayed:

linpts
equal to specifies
0 connecting line only
1 points with error bars
2 points, error bars, and connecting lines

Symbol dependence

linpts Display style

Symbols changed
datype data type

datsiz number of datapoints
disply current display type
stack stack depth

See also

dr — Draw work space and stack

Ivo — Load volume time course

Xyp zero

Xyp zero zeroes the workspace, and changes the data type to (x,y) pairs.

Xyp add x y sigma_y

X X value
y y value
sigma_y sigma value

xyp add adds a single data point to the work space.

Xyp delete x y
X x value
y y value

xyp delete deletes a single data point from the work space.

Xyp cursor add

xyp cursor add adds a single point to the workspace. This operation requires
a current plot to establish graphics context. A crosshair cursor is enabled,
allowing you to select an (x,y) location and click the mouse button to add the
point. The new sigma_y is set to one.

Xyp cursor delete

xyp cursor delete allows you to use the cursor to select a point to be deleted
from the workspace. A crosshair is enabled, which may be used to delete a
point by placing it over the point and clicking the mouse button.

Xyp get pt# symbol_x symbol_y symbol_sigma

pt# point number
symbol_x symbol for x value
symbol_y symbol for y value

symbol_sigma symbol for sigma value

Xyp get loads the values from a specified point number pt# into the symbols
symbol_x, symbol_y and symbol_sigma.

xyp label x_label y label
x_label text for x-axis units
y_label text for y-axis units

xyp label specifies the label units for the x and y axis to be annotated on plots.

Xyp sort who order

who value to sort by:
1=x value
2=y value
3=sigma value

order sort-order specification
1=ascending order
2=descending order

Xyp sort sorts the (x,y) points based on x value, y value, or sigma value. To
draw the data with lines connecting the points, the data must be sorted by x
value in ascending order.

xyp read file_name

file_name file name of (x,y) pairs to read

xyp read reads in an ASCII file containing (x,y) pairs into the work space. The
format of the file is:

Line 1: label text for both axes (2a20)

Line 2-N: X _value Y_value sigma_value (space delimited)

xyp write file_name

file_name filename of (x,y) pairs to write

Xyp write writes the (x,y) pairs in the work space to an ASCII file with format
as specified above.

xyp fit function convergence parameters

parameter option description
function specifies fitting function

0 help — lists all functions

1 linear regression (straight line fit) f(x)=A0+A1*x

2 polynomial (order is next parameter)
f(X)=A0+AL*X+A2*X*X+AJ*X*X*X...

3 simple exponential with explicit zero intercept
f(x)=A0*exp(A1*x)

4 general simple exponential
f(x)=A0+Al*exp(A2*X)

5 bi-exponential
f(x)=A0+Al*exp(A2*x)+A3*exp(Ad*X)

6 NOE time course f(x)=A0*x*exp(A1*x)

7 general NOE f(x)=A0+Al*x*exp(A2*X)

8 Hyperbolic rectangular f(x)=A0*(x/(x++Al)

xyp fit performs a least-squares fit of the (x,y) data in the work space to the
specified model function. The resulting coefficients are saved into the symbol
coefN, where N is the coefficient number. The sigma value for each coefficient
is saved into the symbol sigmN, corresponding to each coefficient. The error
of the fit is returned in the chisq symbol. Following the fit, buffer 1 contains
the model data and stack is set to one. Subsequent draws using dr plot both the
original and model data.

xyp build function

parameter option description
function specifies fitting function

o

help — lists all functions
1 linear regression (straight line fit) f(x)=A0+A1*x

polynomial (order is next parameter)
f(X)=A0+AL*X+A2*X*X+AJ*X*X*X. .

3 simple exponential with explicit zero intercept
f(x)=A0*exp(Al1*x)

4 general simple exponential
f(x)=A0+Al*exp(A2*X)

5 bi-exponential
f(x)=A0+Al*exp(A2*x)+A3*exp(A4*x)

6 NOE time course f(x)=A0*x*exp(A1*X)

7 general NOE f(x)=A0+Al*x*exp(A2*X)

xyp build performs a curve calculation using the symbols coefN, where N is
the coefficient number. The function for the curve calculation is defined by the
parameter function and the command will expect the coefficients to be in right
symbol. The reconstruction will happen only if the workspace is in (X,y) pair
form. The reconstructed curve is stored in buffer 1 and by subsequent drawing
command the theoretical curve is getting drawn on the current x,y plot.

Xyz — Atom manipulation

The xyz command provides a number of operators that act on atomic coordi-
nates. These operators allow you to display, identify, label and interact with
structures graphically while maintaining a connection to all NMR-related
information.

Symbols changed
disply current display type

See also
bck — Back-calculate NOE intensities

xyl — Atom list manipulation

Xyz draw sphere play

sphere radius of van der Waals cloud to display (0=bonds only)
play display mode: O=flat draw, 1=3D display (if projct=4)

xyz draw displays the current molecule. The atoms are drawn using their cur-
rent attributes, which include color, visibility and label. These attributes may
be changed using other xyz operators.

Xyz who symbol

Xyz who enables a crosshair cursor and allows you to select an atom, then
returns the item number of the atom in symbol. If no atom is selected, symbol is
set to zero (0). This operator works both on "flat" and 3D displays.

Xyz read type file

type filetype: 0=PDB format, 1=Insightllformat, 2=X-PLOR PDB format
and the names stored as Insight Il names (used in Assign)
3=MDL MOL format (used in Analytical)

file name of existing coordinate file

xyz read reads an ASCII file containing atomic coordinates. This operator
builds DBA entities for atoms, attributes and residues. For PDB files, the file
name can have an explicit extension (the default is .pdb). Insight 11 files should
not include an extension, as the command will look for both file. mdf and
file.car.

If type=2 the X-PLOR type PDB file can be read in and the names of the atoms
stored in Insight 1l type notation: 1:residuename_residuenumber:atomna-
menumber

If type=3 the MDL MOL file can be read in.

Xyz label atoms on/off redraw

atoms atoms(s) to label (by item#, DBA, match string, or -1 for cur-
sor)
on/off label operation: 1=turn label on, O=turn label off

redraw redraw status: 0=no redraw, 1=redraw now to show label
change

xyz label labels one or more atoms in the current display with corresponding
full atom names. Labels may be turned on and off. The atom(s) may be selected
by item number, crosshair cursor, or by giving a DBA list specifier (1#) or a
match string. A match string may include a wild card character (*). The display
can be automatically redrawn following the label change, or you can issue a
number of xyz label operations before redrawing the display.

Xyz visible atoms on/off redraw

atoms atoms(s) to label (by item#, list, match string, or -1 for cursor)
on/off label operation: 1=turn label on, O=turn label off

redraw redraw status: 0=no redraw, 1=redraw now to show label
change

xyz visible makes atoms visible or invisible. The atom(s) may be selected by
item number, crosshair cursor, or by giving a DBA list specifier (1#) or a match
string. A match string may include a wild card character (*). The display can
be automatically redrawn following the visibility change, or you can issue a
number of xyz visible operations before redrawing the display.

Xyz color atoms pen redraw

atoms atoms(s) to label (by item#, DBA, match string, or -1 for cur-
sor)

pen color number

redraw redraw status:0=no redraw, l=redraw now to show label
change

xyz color sets the display color of the specified atoms. The atom(s) may be
selected by item number, crosshair cursor, or by giving a DBA list specifier (1#)
or a match string. A match string may include a wild card character (*). The

display can be automatically redrawn following the visibility change, or you
can issue a number of xyz color operations before redrawing the display.

xyz distance atom1 atom2 symbol

atoml first atom (by item number, DBA list, or atom name string)

atom2 second atom (by item number, DBA list, or atom name
string)

symbol symbol to receive distance between atoml and atom2

xyz distance calculates the distance between two specified atoms. Each atom
may be selected by item number, DBA list, crosshair cursor, or by atom name.
If both atoms exist, the interatomic distance in angstroms is returned in symbol.
If any of the atoms is a pseudoatom, the effective distance is calculated:

Any error returns a distance of zero.

Xyz pattern atoml atom2 pen redraw

atoml first atom (by item number, DBA list, or atom name string)

atom2 second atom (by item number, DBA list, or atom name
match string)

pen color number
redraw redraw status: 0=no redraw, 1=redraw now

xyz pattern draws a line of the specified color connecting two atoms. Each
atom may be selected by item number, DBA list, crosshair cursor, or by atom
name. This operator is commonly used to graphically display interactions
between spin pairs (e.g., distance monitors).

Xyz clear

xyz clear deletes all the entities connected to the molecule

xyz:atoms, xyz:bonds, xyz:residues, andxyz:atm_atr.

Xyz current type atoms bonds residues atom_atr patterns

type type of the molecule (0=PDB, 1=Insight Il, 2=X-PLOR, 3=MDL
MOL)

atoms atom entity (xyz:atoms)

bonds bond entity (xyz:bonds)

residues residue entity (xyz:residues)
atom_atr atom attribute entity (xyz:atm_atr)
patterns pattern entity (xyz:pattern)

The xyz current command makes the entities connected to the molecule cur-
rent. This command acts as if an xyz read command were executed, therefore
this is an alternative to that command, if the molecule was read into a database
during a previous session and saved. Use this command to let FELIX know
that there is a valid molecule in the memory.

Xyz assembly entity_root file #_of _mol

entity_root root name of the entity — e.g., xyz:arc, the subsequent
molecules will be stored as xyz:arcl, xyz:arc2...

file name of existing Insight Il archive file in sequential format
(-arcs) without the suffix

of mol number of molecules to read in from the .arcs file, the
maximum number is 99

xyz assembly reads an ASCII file containing an ensemble of molecules in
Insight 1l sequential archive format (.arcs). The specification should not
include an extension, as the command will look for both file. mdf and file.arcs.

ze — Zero workspace

e

ze causes the data in the workspace to be set to 0.0.

Symbol dependence

datsiz number of datapoints

See also

set — Set work space to a value

zf — Zero fill

zf points

points new size for data

zf expands the data in the work space to a larger size, filling the additional
space with zeros. The zero fill command is used before Fourier transformation
to improve digital resolution. The default new size is the next integral power
of two that is larger than the current size.

Symbol dependence

datsiz number of datapoints

Symbols changed

datsiz number of datapoints

zgt — Zero greater than

zgt threshold

threshold threshold value for zeroing

zgt zeroes all points in the work space that are greater than the specified
threshold value. This is a brutal way to wipe out big peaks in your spectrum.

The zgt command is sometimes used to remove a water peak from a spectrum
in order to speed up the plotting process.

Symbol dependence

datsiz number of datapoints

datype data type

See also

zIt — Zero less than

zi — Zero imaginary

zi
zi zeroes the imaginary part of the data in the workspace.
Symbol dependence

datsiz number of datapoints

datype data type

See also

zr — Zero real

zIt — Zero less than

zIt threshold

threshold threshold value for zeroing

zlt zeroes all points in the work space that are less than the specified threshold.
This is a drastic way to wipe out baseline noise, as well as small peaks.

Symbol dependence

datsiz number of datapoints

See also

zgt — Zero greater than

zr — Zero real

zZr

zr zeroes the real part of the data in the workspace.

Symbol dependence
datsiz number of datapoints

datype data type

See also

Zi — Zero imaginary

zp — Null plot

This command is similar to np, except that it does not draw the axis and labels.

¢5 B Symbol Reference

All symbols listed in this appendix are reserved symbols.

absint — Absolute intensity

This symbol controls the automatic scaling of 1D plots and 2D stack
plots. By default, each plot is scaled to fill the plot area. Set absint
before plotting.

Symbol Settings

0 scale the next plot to best fill the plot area
1 draw the next plot using the scaling from previous
plot

Commands affected

dr — Draw work space and stack
exp — Expanded display

ful — Full display

sp — Stack plot

absmgl, absmg2, absmg3, absmg4 — Absolute
magnitude peak search window size

This symbol controls the size of the window used to find antiphase
peaks during peak picking. The search window half-width is given
for each dimension to reflect the resolution of the matrix. Set
absmgn before picking antiphase peaks.

Commands affected

pic — Peak pick and label

FELIX Command Language Reference/ March 2002 251

animat — Animation switch

This symbol controls the use of double buffered graphics for smoother display
of changing plots. By default, each plot erases the frame, draws a box and axes,
and then draws the spectrum. Rapid replotting causes flickering of the image.
Turning on animation minimizes the flicker by not showing the new plot until
it is finished.

Symbol Settings

0 no double buffering
1 use double buffering for smoother display

Commands affected

dr — Draw work space and stack
exp — Expanded display

ful — Full display

cp — Contour plot

ip — Intensity plot

sp — Stack plot

annang — Annotation angle

This symbol controls the angle for displaying annotation text. All angles
between 0° and 360° are allowed.

Symbol Settings

0 horizontal, from left to right
90 vertical, from bottom to top
270 vertical, from top to bottom

Commands affected

tex — Text annotation

gre — Greek text annotation

annasz — Annotation arrow size

This symbol controls the size of the arrow head on annotation arrows. The size
is specified in inches.

Commands affected

arr — Arrow annotation

anncol — Annotation color

This symbol controls the color of subsequent annotations. Any valid pen num-
ber is a valid annotation color.

Commands affected

arr — Arrow annotation

lin — Line annotation

rec — Rectangle annotation

tex — Text annotation

gre — Greek text annotation

annfil — Annotation file

This symbol specifies the current annotation file. This file will be automatically
drawn on the next plot whenever the symbol pltann is on, or explicitly drawn
on the current plot by the ann command.

Commands affected

ann — Annotate plot

See also

pltann — Annotation switch

annist — Annotation line style

This symbol controls the line style of arrow and line annotations. Lines may be
solid or dashed.

Symbol Settings

0 solid lines

1 large dashes (~ 1 per quarter inch)

2 medium dashes (~ 2 per quarter inch)
3 small dashes (~ 3 per quarter inch)

Commands affected

arr — Arrow annotation

lin — Line annotation

annpfx — Annotation prefix

This symbol specifies the directory for reading and writing annotation files.

annsiz — Annotation text size

This symbol controls the size of annotation text. The size is in inches, and
determines the height and width of each character drawn.

Commands affected
tex — Text annotation

gre — Greek text annotation

annunt — Annotation units

This symbol controls the interpretation of the position parameters for all anno-
tation commands. Each annotation command has at least one set of x,y coordi-
nates that define the location for that annotation. The units of these position
parameters are given by this symbol, and may be any one of the choices shown
below.

Normalized device coordinate units (NDC) treat any region as a range from
zero to one, where the lower left corner is (x=0, y=0) and the upper right corner

is (x=1, y=1).
Symbol Settings
0 NDC within the plot
1 NDC within the frame
2 axis units
3 points

Commands affected
arr — Arrow annotation

lin — Line annotation

rec — Rectangle annotation
tex — Text annotation

gre — Greek text annotation

autox, autoy, autoz — Autorotation X-, Y-, and Z-angle
increments

autpse — Autorotation pause

autrot — Autorotation switch

cntrot — Autorotation count

These symbols control the autorotation of 3D plots and coordinates. Within the
3D display interface, the display can be automatically rotated for a set duration
without the use of the mouse.

Symbol Settings

autrot 0 = no autorotation, 1 = do autorotation
autpse seconds of pause between each step of rotation
cntrot number of steps of rotation to do

autox, autoy, the angle in degrees to turn the display by during
autoz each step of the rotation

Commands affected
cp — Contour plot
ip — Intensity plot

xXyz — Atom manipulation

See also

projct — Graphics projection type

axsobj — Axis object switch

This symbol shows the display status of the plot axes in the 3D display inter-
face.

Symbol Settings

0 Axes not visible
1 Axes visible

Changed by commands

cp — Contour plot

ip — Intensity plot
np — Null plot
pla — Redisplay 3D object

axtype — 1D Axis type

This symbol controls the axis units used on 1D plots. This affects axis labeling
and the units returned by the cur command.

Symbol Settings

0 display no axis labels
display axis labels in points
display axis labels in Hertz
display axis labels in ppm
display axis labels in seconds
display axis labels in 1/cm

a b WN B

Commands affected

dr — Draw work space and stack
exp — Expanded display

ful — Full display

cur — Cursor control

blsize, b2size, b3size, b4size — Matrix brick size

These symbols tell the size of each brick in the current matrix. Some matrix
manipulation macros can minimize the number of disk accesses by knowing
the number of vectors per brick.

Changed by commands

mat — Open matrix

cmx — Close matrix file(s)

basent — Baseline points entity

This is the name of the current baseline points entity.

Commands affected
abg — Automatic selection of baseline points
bas — Baseline points manipulation

csp — Cubic spline baseline correction

pol — Polynomial baseline correction

bcfrac — Baseline correct fraction

This symbol is not currently used.

bckrad — Back-calculation cutoff radius

This symbol controls which interatomic contacts contribute to the back-calcu-
lated spectrum. Only atom pairs that are closer than this distance, in ang-
stroms, are included in the calculation.

Commands affected

bck — Back-calculate NOE intensities

See also

minzee — Cutoff Z-magnetization for back-calculation

bigpt — Big point in workspace
This symbol contains the largest data value of all points in the current 1D plot.

Changed by commands

dr — Draw work space and stack
exp — Expanded display
ful — Full display

See also

smalpt — Small point in workspace

blkwht — Black/White reverse switch

This symbol controls the color convention used by the FELIX 2002 graphics
window. The symbol must be set before the FELIX graphics window is created,
and is traditionally set in the init.mac file. blkwht affects every command that
draws anything on the graphics window.

Symbol Settings

0 black background with white text and lines
1 white background with black text and lines

button — Button status

This symbol contains the number of the most recently pressed button in a dia-
log box or database spread sheet. This allows a macro to act based on which
button the user pressed. For dialog boxes, the button numbers are defined in
the menu file that creates that dialog box.

Symbol Settings

0 quit, cancel, or the <Esc> key
1 save, OK, or the <Enter> key
2. available, as defined by each dialog box

Changed by commands

mnu — Menu manager

dba — Database facility (dba ent edit Entity Viewer)
dba — Database facility (dba ent select Entity Selector)

celpxx — Cell X pixels

celpxy — Cell Y pixels

These symbols contain the size of a character cell in pixels, as used by the
Menu Interface. The symbols are useful for converting between pixel and char-
acter locations on the FELIX graphics window. celpxx and celpxy are set when
the FELIX graphics window is first opened. The size of a character cell is based
upon, and slightly larger than, the font size.

center — Center plot switch

This symbol controls the centering of 1D plots.

Symbol Settings
0 no centering, zero is near the bottom

1 center the plot, zero is at the middle
Commands affected
dr — Draw work space and stack
exp — Expanded display
ful — Full display

See also

ovrlap — Stack overlap

scale — Plot scale factor

chi — Minimum chi-square value

This symbol stores the minimum chi-square value calculated by the chi com-
mand. The flt command uses this value to determine baseline segments of a
spectrum.

Commands affected

flt — FLATT baseline flattening

clmode — Contour level mode

This symbol controls the method used to space multiple contour levels on a
plot.

Symbol Settings
0 linear spacing

1 geometric spacing
Commands affected
dr — Draw work space and stack
exp — Expanded display
ful — Full display

See also
conmod — Contour spacing modifier
drwclv — Draw contour levels switch

nlevel — Number of contour levels

cntrot — Autorotation count

See autox.

colcur — Color of cursor

This symbol controls the color of all cursors used by FELIX 2002, to the extent
that the computer hardware allows. Any valid pen number is a valid cursor

color. This symbol must be set before the FELIX graphics window is created. It
is traditionally defined in the init.mac file. Be forewarned that the number of
bitplanes in your computer and the setting of the symbol blkwht can affect the
appearance of cursor colors.

Commands affected

cur — Cursor control

conmod — Contour spacing modifier

This symbol controls the spacing of multiple contour levels on a plot. Each suc-
cessive contour level is based on a factor of the previous level. This symbol is
that factor. With linear spacing (clmode = 0) the factor is additive, while for
geometric spacing (clmode = 1) the factor is multiplicative. It must have a
value greater than 0.0 for cimode = 0, and greater than 1.0 for ciImode = 1; the
larger the value, the wider the spacing between levels.

Commands affected

dr — Draw work space and stack

cp — Contour plot

ip — Intensity plot

See also
clmode — Contour level mode
drwclv — Draw contour levels switch

nlevel — Number of contour levels

contyp — Contour interpolation type

This symbol controls the method of interpolation used when contouring.

Symbol Settings ‘
0 no interpolation (faster and more angular)

1 cubic-spline interpolation (slower and smoother)
Commands affected

cp — Contour plot

ip — Intensity plot

cutoff — Cutoff for stack plot

This symbol controls the maximum peak height of stack plots by clipping off
the tops of peaks that are taller than a given height. This helps to keep small
peaks visible by preventing tall peaks from completely filling the plot. The cut-
off height is given in inches.

Symbol Settings

0 no clipping, draw entire peak
N clip all peaks taller than N inches to be exactly N
inches

Commands affected

sp — Stack plot

cycle — Color cycle length

cycle controls the cycling of colors when drawing multiple 1D buffers or ND
contours. By default, each plot is drawn in only one color. To make multiple
colored plots, increase the value of cycle to the number of different colors to
use.

Commands affected

dr — Draw work space and stack

ovc — Overlay contour plot

cp — Contour plot

ip — Intensity plot

sp — Stack plot

See also

nlevel — Number of contour levels
pennum — Starting color

stack — Stack depth

dlsize, d2size, d3size, d4size — Matrix size

These symbols contain the size in points of the current matrix, for each dimen-
sion.

Changed by commands

mat — Open matrix

cmx — Close matrix file(s)

See also

dimen — Number of Matrix Dimensions

dlvect, d2vect, d3vect, d4vect — Current vector

These symbols contain the indices of the vector most recently loaded out of the
matrix. Note that one index is zero, denoting the dimension that the vector
spans.

Changed by commands

loa — Load vector from matrix

datfil — 1D Data file

This symbol contains the name of the current 1D data file.

Changed by commands
re — Read a file (old format)
rn — Read file (new format)
wr — Write a file (old format)

wn — Write a file (new format)

datpfx — 1D Data file prefix

This symbol specifies the directory for reading and writing 1D data files.

datsiz — Data size

datsiz specifies the size of the spectrum in the workspace, in points. Thisis also
the size of any spectra in the buffers. The data size is used or set by virtually
all the 1D commands.

Changed by commands

dbl — Double data size

hav — Halve data size

Ipl — Linear predict last points

re — Read a file (old format)

rn — Read file (new format)
zf — Zero fill

See also

datype — Data type

datype — Data type

This symbol defines the type of data in the work space and buffers. The data
type is used or set by most of the 1D commands.

Symbol Settings

0 real data
1 complex data
2 Xy pairs

Changed by commands
cpl — Real to complex

hft — Hilbert transform

Ivo — Load volume time course
re — Read a file (old format)
red — Reduce complex to real
rn — Read file (new format)

xyp — X,Y data pair manipulation

dbafil — Database file

This symbol specifies the name of the current database file.

dbapfx — Database file prefix

This symbol specifies the directory for reading and writing database files.

deltax, deltay — Delta x and y for stack plot

These symbols control the skew and tilt of stack plots. Valid values are in the
range 1.0 to -1.0 and represent the fractional shift per data point.

Commands affected

sp — Stack plot

dimen — Number of Matrix Dimensions

This symbol contains the number of dimensions in the current matrix.

Symbol Settings

1

2
3
4

no matrix is currently open
current matrix is 2D
current matrix is 3D
current matrix is 4D

Changed by commands

mat — Open matrix

cmx — Close matrix file(s)

dimplt — Number of plot dimensions

This symbol contains the number of dimensions in the current plot.

Changed by commands

cp — Contour plot

ip — Intensity plot

np — Null plot

See also

plotdl, plotd2, plotd3, plotd4 — Plot dimension

disply — Current display type

This symbol contains the type of the current plot. This is useful for knowing
what kind of picture is in the current frame.

Symbol Settings

0

N O O W NP

no current plot

1D plot

contour or intensity plot
stack plot

tile plot

XY pairs plot

atom plot

8 object plot
9 object with Axes plot

Changed by commands

clr — Clear frame

dr — Draw work space and stack
exp — Expanded display

ful — Full display

cp — Contour plot

ip — Intensity plot

np — Null plot

sp — Stack plot

xyp — X,Y data pair manipulation

Xyz — Atom manipulation

draw3d — 3D capability switch

This symbol flags whether FELIX can perform 3D rotations on this computer.
Note that FELIX does rotations using 3D hardware on some computers and
emulates this functionality in software on other computers. This symbol is set
when the FELIX graphics window first opens.

Symbol Settings

0 3D rotations not supported
1 3D rotations supported

drwbox — Draw box switch

This symbol controls whether a box is drawn around plots.

Symbol Settings

0 no box
1 draw a box

Commands affected

dr — Draw work space and stack
exp — Expanded display

ful — Full display

cp — Contour plot

ip — Intensity plot

np — Null plot
xyp — X,Y data pair manipulation

drwclv — Draw contour levels switch

This symbol controls whether contour levels are drawn on 1D plots.

Symbol Settings
0 do not draw levels

1 draw contour levels
Commands affected
dr — Draw work space and stack
exp — Expanded display
ful — Full display

drwpks — Draw peaks switch

This symbol controls the automatic drawing of peaks on the current plot.
When on, drwpks causes the plot to automatically draw the current peaks.
This is very useful for hard copy plots.

Symbol Settings

0 do not draw peaks

1 draw peaks

2 draw peaks colored by plane position

3 draw peaks colored by assignment status
4 draw peaks colored by protopattern

Commands affected

dr — Draw work space and stack
exp — Expanded display

ful — Full display

cp — Contour plot

ip — Intensity plot

hcp — Hard copy plot

np — Null plot

drwxpk — Draw cross peaks switch

This symbol is not currently used. See drwpks — Draw peaks switch.

dspmod — Display mode

This symbol controls the type of data displayed in a 1D plot. By default, FELIX
displays only the real components of 1D spectra.

Symbol Settings

0 real data only
1 imaginary data only
2 real and imaginary, side by side

Commands affected

dr — Draw work space and stack
exp — Expanded display

ful — Full display

erase — Erase display switch

This symbol controls whether the display is erased prior to drawing a plot. By
default, FELIX clears the display before each plot is drawn.

Symbol Settings

0 no auto erase
1 always erase

Commands affected

dr — Draw work space and stack
exp — Expanded display

ful — Full display

cp — Contour plot

ip — Intensity plot

np — Null plot

etcpfx — Runtime files prefix

This symbol specifies the directory for reading and writing various runtime
temporary files.

first — First point

This symbol controls the extent of data displayed by a 1D expanded plot. first
holds the first data point to be displayed.

Commands affected

dr — Draw work space and stack

exp — Expanded display

See also

last — Last point

fixver — FELIX version number

This symbol contains the version number of the FELIX program. flxvr is set
when FELIX starts.

fontsw — Font switch

This symbol controls the method for generating text in PostScript hard copy
plots. By default, FELIX strokes out characters using a stroke generator. This is
excessively bulky and inefficient when the hard copy device has scalable fonts.

Symbol Settings

0 stroke characters
1 use PostScript font

Commands affected

hcp — Hard copy plot

fontsz — Font size

This symbol is not currently used. The font closest to the text size requested is
used.

frsize — Frame size

This symbol contains the maximum data size that can be held in the workspace
or any buffer. This also is the maximum number of items that can be held in a
database list. Reconfiguring memory is the only way to change the frame size.

Changed by commands

cfg — Configure memory

See also

nframe — Number of stack frames

gbroad — Gaussian coefficient

This symbol determines the degree of Gaussian character that the Lorentzian/
Gaussian resolution enhancement apodization function possesses. This func-
tion is intended to behave as the gm function on a Bruker spectrometer.

Commands affected

gm — Gaussian/Lorentzian window

gibbs — Gibbs filter switch

Controls the Gibbs filter function of the fast Fourier transform operation. The
Gibbs filter divides by two the first and last points of the data in the time
domain.

Symbol Settings

0 Gibbs filter off
1 Gibbs filter on

Commands affected

bft — Bruker-Fourier transform

ft — Fast Fourier transform

rft — Real Fourier transform

hft — Hilbert transform

dft — Fast Fourier transform of digitally oversampled data

ift — Inverse Fourier transform

graysc — Gray scale switch

This symbol controls the PostScript plot output rendering. When gray scale is
off, the plot is rendered in color using the FELIX 2002 pen colors. Turning gray
scale on causes FELIX to render the plot in a graded gray scale.

Symbol Settings

0 gray scale off
1 gray scale on

Commands affected

hcp — Hard copy plot (PostScript Only)

grid — Grid switch

grid controls the drawing of a grid on plots. The value of grid determines the
number of grid lines or tick marks that appear for each axis label.

Symbol Settings

0 no grid
N N grid lines per label
-N N tick marks per label

Commands affected

dr — Draw work space and stack
cp — Contour plot

ip — Intensity plot

sp — Stack plot

gridco — Grid color

Sets the color to use for grids. This is usually set to 15 in mninit.mac

gridst — Grid style

Sets the style of grid lines. By default, this is set to -1 in mninit.mac, which pro-
duces dashed lines. If gridst is greater than or equal to zero, then straight lines
are produced.

hafwid — Halfwidth factor

Controls the size of cross peak footprint boxes. The footprint size is twice the
product of hafwid and the half-width at half-height values that are stored by
the peak picker in the cross peak entity. Several commands operate on the area
inside the peak footprints, so they are influenced by this symbol.

Commands affected

drx — Display cross peaks
fit — Fit 1D peaks
md — Model data

til — Tile plot

vol — Integrate cross peak volumes

harddv — Hardcopy destination

This symbol is not currently used.

Commands affected

hcp — Hard copy plot

hardmo — Hardcopy mode

This symbol is not currently used.

Commands affected

hcp — Hard copy plot

hardx0, hardy0, hardxs, hardys — Hardcopy origin and
size
These symbols are not currently used.

Commands affected

hcp — Hard copy plot

hfwidl, hfwid2, hfwid3, hfwid4 — Minimum peak half

width
This symbol controls the peak pick command. hfwidn defines the minimum
halfwidth of a valid peak, in points, for all dimensions. Any peak with less

than the minimum halfwidth in any dimension is not entered into the cross
peak entity.

Commands affected

pic — Peak pick and label

hilim — Current plot region high limits

See lolim below.

hndshk — HPGL plotter handshake

Thissymbol determinesthe handshaking values set inthe HPGL hardcopy file. Setting
hndshk to 0 instructs FELIX 2002 to use the handshaking values that were specified
in versions 230 and earlier of FELIX. These values set software XON/XOFF hand-
shaking with the default logical buffer size and the plotter sends X OFF to the computer
when 161 free bytes remain in the plotter buffer. A more conservative handshaking
scheme occurs when hndshk is set to 1. This again selects XON/X OFF handshaking
but instructs the plotter to send X OFF when 1023 free bytes remain in the buffer, i.e.,
after one byte enters the buffer. If neither of these software handshaking choicesis sat-
isfactory, set hndshk to 3, which instructs FELIX to omit handshaking initialization
commands, and create afile of the appropriate handshaking initialization instructions
caled pref . 31 inthedirectory where you run FELIX. The contentsof pref .31
will be appended to the beginning of the hard copy output file. Finally, setting hndshk
to 2 disables software handshaking and enables hardware handshaking.

Commands affected

hcp — Hard copy plot

inbias, inslop — Integral bias and slope corrections

These symbols determine the amount of bias and slope correction applied to
the calculation of 1D integrals. Note that accepted values are 0.0 to 1.0.

Commands affected
int — Integral

seg — Integral segments

See also

intolp — Integral overlap

segint — Segmented integral switch

intolp — Integral overlap

This symbol controls the extent to which drawn integrals overlap the spec-
trum. All values between zero and one are valid.

Symbol Settings

0 no overlap
1 full overlap

Commands affected

dr — Draw work space and stack

See also

segint Segmented Integral Display Mode

item — Menu item

This symbol returns the line number of the most recently selected menu on
which the user clicked the left mouse button. When no item is selected, the
symbol has the value 0. This symbol is set by the menu wait command.

Changed by commands

mnu — Menu manager

See also

menu — Menu name selected

iwidth — Interval width for baseline correction

This symbol controls noise effects in baseline correction by defining the num-
ber of baseline data values that are averaged about each baseline point to
determine the baseline value used for the correction. iwidth point values
above and below the baseline point are used.

Commands affected

csp — Cubic spline baseline correction

pol — Polynomial baseline correction

keyhit — Keyboard character struck

This symbol returns the keyboard character the user struck in response to any
of several commands. The possible values of keyhit include: escape, mouse,
motion, null, key a...key z, and key_0...key 2. Any command that accepts
the <Esc> key to terminate that command will also set keyhit to show the ter-
mination event.

Changed by commands
cur — Cursor control
mnu — Menu manager

cp — Contour plot

ip — Intensity plot

last — Last point

This symbol determines the last point of an expanded 1D plot.

Commands affected

dr — Draw work space and stack

exp — Expanded display

See also

first — First point

Ibroad — Line broadening

This symbol determines the amount of line broadening, in Hertz, applied by
apodization functions.

Commands affected

em — Exponential multiply

gm — Gaussian/Lorentzian window

mf — Matched filter

level — Contour level

This symbol controls the first contour level plotted. The product of the
reserved symbols level and mscale determines the absolute data value of the

first contour level. All matrix data points greater than that value will be plot-

ted.

Commands affected

cp — Contour plot

ip — Intensity plot

pic — Peak pick and label

See also

mscale — Matrix scale factor

posneg — Negative level switch

linpts — Lines/Points for draw command

This symbol controls whether the dr command displays data as isolated
points, line segments or histograms. This symbol is also used by xyp to control
whether x,y pairs are displayed as lines and/or points with error bars, or his-

tograms.

Symbol Settings

0
1
2
3

4

lines
points
lines and points (xyp only)

histogram (in 1D as MS spectrum, in xy as histo-
gram plot)

histogram (with error bars only in xy plot)

Commands affected

dr — Draw work space and stack

xyp — X,Y data pair manipulation

loc3x0, loc3x1, loc3y0,loc3yl, loc3z0, loc3z1 — 3D

Locator endpoint coordinates

These symbols are not currently used.

lolim1, hilim1, lolim2, hilim2, lolim3, hilim3, lolim4,hilim4
— Current plot region low and high limits

These symbols contain the data point limits of the current matrix plot region.
In addition to reporting the current limits, they can be set by the user to affect
the limits of the subsequent plot.

Changed by commands
lim — Matrix limits

mat — Open matrix

macfil — Macro file

macfil defines the name of the current macro file.

Changed by commands
ex — Execute a macro
exr — Execute a macro and return

rm — Read macro

macpfx — Macro file prefix

This symbol specifies the directory for reading and writing macro files.

matfil — Matrix file

This symbol contains the name of the current matrix file.

Changed by commands
mat — Open matrix

cmx — Close matrix file(s)

matpfx — Matrix file prefix

This symbol specifies the directory for reading and writing matrix files.

maxvol — Maximum volume slots in entity

This symbol controls the number of volume slots created when a new volume
entity is built. The number of slots can not be changed once the volume entity
exists. The default is six slots, and the maximum value is sixteen slots.\

mdlcfl, mdicf2 — Model data coefficients 1 and 2
(matrix factor)

mdlpke — Model data peak entity ID

mdlvle — Model data volume entity ID

mdlvsl — Model data volume slot number

These symbols contain the state of the most recent model data command. They
correspond to the five parameters on the md command line.

Changed by commands

md — Model data

menu — Menu name selected

This symbol contains the name of the most recently selected menu on which
the user clicked the mouse button. When no menu is selected, the symbol has
the value null. This symbol is set by the menu wait command.

Changed by commands

mnu — Menu manager

See also

item Menu Item

mframe — Matrix framesize

This symbol controls the maximum size of matrix data files. When building a
matrix, the size of the file on disk will not be allowed to exceed this size, in
megabytes. Multiple disk files will be created, with the possibility of each file
being on different devices.

Commands affected

bld — Build a matrix file

minzee — Cutoff Z-magnetization for back-calculation

This symbol controls the number of cross peaks generated by a back-calcula-
tion run. In theory, the potential exists to create cross peaks for all pairs of pro-
tons in the molecule. In practice, we generate only those peaks that contain
more than some minimum amount of magnetization. The units are a fraction
of one, with the default value being 0.001.

Commands affected

bck — Back-calculate NOE intensities

See also

bckrad — Back-calculation cutoff radius

mnufil — Menu file

This symbol contains the name of the current menu file.

Changed by commands

mnu — Menu manager

mnumod — Default frame position

Thissymbol specifiesthat how far the frameleft border should be (in characters) from
thewindow left edge. The default is 1 character, andisset inmninit . mac.

mnupfx — Menu file prefix

This symbol specifies the directory for reading menu files.

mscale — Matrix scale factor

This symbol controls the interpretation of what constitutes the base contour
level. All data points in the current matrix that have a value greater than the
product of level and mscale will be drawn by cp or ip. This symbol is not usu-
ally changed by the user.

Commands affected

cp — Contour plot

ip — Intensity plot

See also

level — Contour level

msgfil — Message file

This symbol contains the name of the most recently read message file.

msgpfx — Message file prefix

This symbol specifies the directory for reading message files.

msgcl, msgc2, msgil, msgi2, msgrl, msgr2 —
Character, integer, and real message parameters
These symbols are used by the FELIX message utility to give error and warn-

ing messages to the user that contain information specific to the most recent
error or warning. These symbols are not changed by the user.

ndctyp — Normalized device coordinate type

This symbol controls the meaning of ndc with respect to values given to and
gotten from the cursor control command. ndc treats a region as going from
zero to one, with the lower left at (x=0, y=0) and the upper right at (x=1,y=1).
You can set the ndc region to be either the plot box or the entire current frame.

Symbol Settings ’

0 NDC within the current plot
1 NDC within the current frame

Commands affected

cur — Cursor control

See also
x0pnt, yOpnt, x1pnt, ylpnt — Cursor position
ylpnt

newhpglc — control contouring in HPGL plots

If newhpglc is not set (which is the default), HPGL plots use the new contour-
ing method. Or you can specifically set newhpgic:

Symbol Settings

0 Do old-style contouring.
1 Do new-style contouring.

newpostc — control contouring in PostScript plots

If newpostc is not set (which is the default), PostScript plots use the new con-
touring method. Or you can specifically set newpostc:

Symbol Settings
0 Do old-style contouring.
1 Do new-style contouring.

nframe — Number of stack frames

This symbol contains the total number of 1D buffers not including the work-
space. Therefore when nframe is 5, FELIX is configured for the workspace and
5 buffers.

Changed by commands

cfg — Configure memory

See also

frsize — Frame size

nlevel — Number of contour levels

This symbol controls the maximum number of contours drawn on a plot.

Commands affected
cp — Contour plot

ip — Intensity plot

See also

conmod — Contour spacing modifier

level — Contour level

norval — Normalization value

This symbol is not currently used. The command to normalize integral seg-
ments uses an explicit command line argument.

See also

seg — Integral segments.

objmem — Object memory size limit

This symbol controls the maximum amount of memory that FELIX 2002 will
use to store graphical objects. Earlier versions of FELIX were prone to crashing
if all the computer memory was used. Set the object memory size limit, in
bytes, before the FELIX graphics window is first created. This is usually done
in the init.mac file. Setting the limit too low can impede working with objects,
while setting the limit too high can allow FELIX to consume all computer
memory and crash.

orderl, order2, order3, order4 — Matrix dimension
order

This symbol contains the order in which matrix dimensions will be plotted.

Changed by commands

ord — Matrix dimension order

Commands affected
cp — Contour plot

ip — Intensity plot

See also

plotdl, plotd2, plotd3, plotd4 — Plot dimension

orient — Postscript orientation

This symbol is not currently used.

Commands affected

hcp — Hard copy plot

ovrlap — Stack overlap

This symbol controls the overlap of the work space and buffers when display-
ing a 1D plot.

Symbol Settings
0.0 no overlap

1.0 complete overlap
Commands affected
dr — Draw work space and stack
exp — Expanded display
ful — Full display
hcp — Hard copy plot

See also

stack — Stack depth
stkord — 1D Stack display order

paphgt — Paper height
This symbol is not currently used.

Commands affected

hcp — Hard copy plot

See also

hardmo — Hardcopy mode
papwid — Paper width
pltorg — Plot origin

papwid — Paper width
This symbol is not currently used.

Commands affected

hcp — Hard copy plot

See also

hardmo — Hardcopy mode
paphgt — Paper height
pltorg — Plot origin

pennum — Starting color

This symbol specifies the rendering color (i.e., the pen number) for data dis-
plays. If the pen cycle is greater than 1, the specified pen number serves as the
initial color in the drawing cycle. The default pen number values are mapped
to rgb colors as shown below.

Symbol Settings
0 black
white
red
green
blue
violet
cyan
7 yellow
15 gray
On some computers, the pen number values are interpreted using modulo 7
arithmetic, that is, pennum = 8 is identical to pennum = 1.

O g b WN PP

Commands affected

dr — Draw work space and stack
exp — Expanded display

ful — Full display

cp — Contour plot

ip — Intensity plot

sp — Stack plot

See also

cycle — Color cycle length

phase0 — Zero-order phase

This symbol specifies the zero-order (constant phase) parameter in degrees.
Useful values range from -360 through 360 (phase0 = 180 implies that the data
are to be negated).

Changed by commands
aph — Autophase spectrum
ra— Read ASCII data

re — Read a file (old format)
rn — Read file (new format)

rph — Real-time phase

Commands affected

ph — Phase correction

See also

phasel — First-order phase

phasel — First-order phase

This symbol specifies the first-order (frequency-dependent phase) parameter
in degrees. The symbol value indicates the frequency dependent phase differ-
ence across the current workspace.

Changed by commands
aph — Autophase spectrum
ra— Read ASCII data

re — Read a file (old format)
rn — Read file (new format)

rph — Real-time phase

Commands affected

ph — Phase correction

See also

phase0 — Zero-order phase

picent — 1D peaks entity

This symbol designates the name of the current 1D peak entity.

Commands affected

pic — Peak pick and label

pksent — Cross peak entity

This symbol designates the name of the current nd peak entity.

Commands affected
drx — Display cross peaks

pic — Peak pick and label

pksobj — Peaks object switch

This symbol records whether the cross peak object was enabled/disabled in
the 3D real time display interface.

Symbol Settings

0 peaks not visible
1 peaks visible

Changed by commands
cp — Contour plot
ip — Intensity plot

np — Null plot
pla — Redisplay 3D object

pkstyl — 1D peak display style

This symbol specifies the manner in which 1D peak extrema are marked when
1D peaks are drawn.

Symbol Settings

0 line only

1 line and arrow

2 arrow only

3 marks the peak width

Commands affected

dr — Draw work space and stack
exp — Expanded display

ful — Full display

hcp — Hard copy plot

pic — Peak pick and label

See also

drwpks — Draw peaks switch

pkunit — Units for picking peaks

This symbol designates the units used to display the position of 1D peak
extrema.

Symbol Settings

0 none
1 points
2 Hertz
3 ppm

Commands affected

dr — Draw work space and stack
exp — Expanded display

ful — Full display

hcp — Hard copy plot

pic — Peak pick and label

plotdl, plotd2, plotd3, plotd4 — Plot dimension

These symbols record the displayed orientation of ND data. The default dis-
play orientation places d1 along the x axis (horizontal: plotd1), d2 along the y
axis (vertical: plotd2), and d3 along the z axis (normal to the video plane:
plotd3). This orientation may be changed by the ord command and the current
plot limits. The subsequently displayed orientation is recorded in the plotdn
symbols. The axis orientations may thus be determined by consulting the
plotdn symbols (e.g., plotd1 = 2 implies that the d2 dimension is currently dis-
played along the x axis, whereas plotd2 = 3 implies that the d3 dimension is
currently displayed along the y axis.

Changed by commands

cp — Contour plot
ip — Intensity plot
np — Null plot

See also

dimplt — Number of plot dimensions

pltann — Annotation switch

This symbol specifies whether or not annotations are automatically displayed
on the current plot.

Symbol Settings

0 no auto annotate
1 auto annotate

Commands affected

cp — Contour plot

dr — Draw work space and stack
exp — Expanded display

ful — Full display

hcp — Hard copy plot

ip — Intensity plot

np — Null plot

See also

annfil — Annotation file

pltmod — Plot mode

This symbol records the type of graphics display employed. The symbol value
is determined by which version (GL or X11) of FELIX is executed, and is set
when the first graphics window is opened. If FELIX is executed without graph-
ics, the value of the symbol should be set to -1 (def pltmod -1) in the init.mac
file.

Symbol Settings ’

-1 open no graphics
13 Silicon Graphics GL
15 X11 graphics

See also

hardmo — Hardcopy mode

pltobj — Plot object switch

This symbol records whether the data object was enabled/disabled in the 3D
real-time display interface.

Symbol Settings
0 contours not visible

1 contours visible
Changed by commands
cp — Contour plot
ip — Intensity plot
pla — Redisplay 3D object

pltorg — Plot origin
This symbol is not currently used.

Commands affected

hcp — Hard copy plot

See also

hardmo — Hardcopy mode
paphgt — Paper height
papwid — Paper width

pltusr — Position plot manually switch

This symbol toggles manual control over plot sizing and positioning.

Symbol Settings

0 control of plot size and offset defaults to fill frame
1 enforce user-defined values for plot origin and size

Commands affected

cp — Contour plot

dr — Draw work space and stack
exp — Expanded display

ful — Full display

hcp — Hard copy plot

ip — Intensity plot
np — Null plot

See also
xzero, yzero — Plot origin

xsize, ysize — Plot size

posneg — Negative level switch

This symbol specifies whether or not to display negative contour levels in 2D
and 3D contour plots. Negative contours can be displayed in a different color
from positive contours by setting the symbol cycle to 2.

Symbol Settings
0 positive contours only
1 negative and positive contours

This same symbol also specifies whether or not to pick negative peaks in the
1D peak pick command.

Symbol Settings
0 pick positive peaks only
1 pick negative and positive peaks
Commands affected
cp — Contour plot
hcp — Hard copy plot
pic — Peak pick and label

See also

cycle — Color cycle length

level — Contour level

projl — Type of 1D projection onto x axis

proj2 — Type of 1D projection onto y axis

This symbol designates the source of the 1D display projections that attend the
x and y axes of a 2D plot.

Symbol Settings
0 no projection
sum projection
"skyline" or "shadow" projection
use contents of buffer #1
use contents of buffer #2
use contents of buffer #3

a b WN B

Commands affected

cp — Contour plot

ip — Intensity plot

See also

projsz — Size of 1D projections

projct — Graphics projection type

This symbol specifies the display (projection) mode.

Symbol Settings

2 draw everything as a flat 2D plane
3 draw 3D as a projection onto a flat 2D plane
4 draw 3D with a real-time rotation interface

Note that the real-time rotation (play) mode is enabled only when projct = 4.

Commands affected
cp — Contour plot

ip — Intensity plot

np — Null plot

pla — Redisplay 3D object

Xyz — Atom manipulation

See also

steang — Stereo angle
stereo — Stereo switch
stesep — Stereo separation

xangle, yangle, zangle — Euler angles

projsz — Size of 1D projections

This symbol designates the size of the x and y projections as a fraction of the
plot sizes in their respective dimensions. Values from 0.1 to 1.0 are valid. This
lets you control how much room is reserved for the projections.

Commands affected

cp — Contour plot

ip — Intensity plot

See also

projl — Type of 1D projection onto x axis

proj2 — Type of 1D projection onto y axis

pwidth — Pen width

This symbol defines the pen width in inches. This affects all axis labels, peak
labels, and annotations.

See also

thick — Character thickness

redraw — Automatic backing store of plots

This symbol enables/disables automatic storage of the contents of frames.
When redraw = 1, this feature provides for a rapid recovery of the frame con-
tents following many kinds of forced (asynchronous) redraw events (like
pushing and popping the FELIX window; an exception would be resizing the
FELIX window). On certain slower platforms, enabling this feature may lead
to an apparent decrease in performance due to the computer’s slower storage

speed.
Symbol Settings
0 no automatic backing store
1 automatic backing store

Commands affected

cp — Contour plot

dr — Draw work space and stack
exp — Expanded display

ful — Full display

ip — Intensity plot

drx — Display cross peaks

refpt — Reference point

This symbol records the data point position corresponding to the reference
shift value for the current contents of the workspace and all buffers.

Changed by commands
re — Read a file (old format)

rn — Read file (new format)

ref — Set shift reference

See also

axtype — 1D Axis type

refsh — Reference shift

sfreq — Spectrometer frequency

swidth — Spectral width

refsh — Reference shift

This symbol records the chemical shift value corresponding to the reference
point for the current contents of the workspace and all buffers. Note that the
reference chemical shift is always stored in Hertz.

Changed by commands
re — Read a file (old format)

rn — Read file (new format)

ref — Set shift reference

See also

axtype — 1D Axis type

refpt — Reference point

sfreq — Spectrometer frequency

swidth — Spectral width

rowinc — Row increment

This symbol specifies the vector increment for stack plots and 3D contour
plots. rowinc = 1 implies that every vector is drawn, whereas a rowinc = 2

implies that every other vector will be drawn. For 3D contour plots, rowinc
affects the density of the "chicken-wire" mesh which constitutes the cross peak
rendering. Itis possible for cross peak contours to not appear if rowinc is larger
that the diameter of the cross peak footprint. In both plot types, the greater the
value of rowinc, the faster the plot completes (with some loss of detail).

Commands affected

sp — Stack plot
cp — Contour plot (ND displays only)

scale — Plot scale factor

This symbol specifies the plot scale of 1D displays and stack plots. A symbol
value of 1 ensures auto-scaling of the data to fit the frame when absolute inten-
sity mode is disabled. Scale values other than 1 apply the implied multiplica-
tive scaling.

Symbol Settings
1 auto-scale data to fit frame if absint =0

Commands affected

dr — Draw work space and stack
exp — Expanded display

ful — Full display

sp — Stack plot

schfil — Schema file

This symbol specifies the name of the current schema file.

schpfx — Schema file prefix
This symbol specifies the directory (prefix) for reading schema files.

Commands affected

dba — Database facility

segent — Integral segments entity

This symbol designates the entity in which output from the integral segments
utility is stored.

Commands affected

seg — Integral segments

segint — Segmented integral switch

This symbol defines segmented integral display attributes.

Symbol Settings

0 no integral

1 integrate entire spectrum

2 integrate over segments, no values displayed
3

integrate over segments, display values above
data

4 integrate over segments, display values below
data

Commands affected

dr — Draw work space and stack
exp — Expanded display

ful — Full display

hcp — Hard copy plot

seg — Integral segments

See also

intolp — Integral overlap

sfreq — Spectrometer frequency

This symbol records the spectrometer frequency value for the contents of the
work space and buffers.

Changed by commands

ra— Read ASCII data

re — Read a file (old format)

rn — Read file (new format)

Commands affected

ppm — Convert Between points and PPM

ref — Set shift reference

See also

swidth — Spectral width

slant — Character slant angle

This symbol specifies the character slant angle in degrees. This affects all text
including axis and peak labels, and annotations.

Commands affected

gre — Greek text annotation

tex — Text annotation

See also

thick — Character thickness

smalpt — Small point in workspace

This symbol records the minimum data value of all points in the current 1D
display.

Changed by commands

dr — Draw work space and stack

exp — Expanded display

ful — Full display

See also

bigpt — Big point in workspace

stack — Stack depth

This symbol specifies the number of buffers displayed. A symbol value of zero
implies that only the work space will be displayed, whereas a symbol value of
one implies that one buffer and the work space will be displayed. The maxi-
mum value of stack is equal to nframe.

Changed by commands

der — Derivative

int — Integral

pop — Pop the display stack

psh — Push the work space onto the buffer stack

xyp — X,Y data pair manipulation

Commands affected

dr — Draw work space and stack
exp — Expanded display

ful — Full display

hcp — Hard copy plot

See also
cycle — Color cycle length
ovrlap — Stack overlap

stkord — 1D Stack display order

status — Command status

This symbol records whether or not a FELIX command completed without
error. Many FELIX commands are capable of indicating their successful (or
unsuccessful) completion using this symbol.

Symbol Settings ’

0 successful completion
1 general error, command failed
other special error of some type

See the individual commands for explanation of special error numbers. When
an error occurs, FELIX reports:

Error in Command. ..

to the parent window. It is the user’s (or macro’s) job to explicitly clear the sta-
tus flag by entering:

def status >0

steang — Stereo angle

This symbol specifies the stereo angle for stereo plots in degrees. A value of 6°
works well for most people. Note that this symbol's value is reset to 6° by all
display commands (see below).

Commands affected

cp — Contour plot

ip — Intensity plot

pla — Redisplay 3D object

Xyz — Atom manipulation

stereo — Stereo switch

This symbol specifies whether (stereo = 1) or not (stereo = 0) to display a 3D
object as a stereo pair.

Commands affected

cp — Contour plot

ip — Intensity plot

pla — Redisplay 3D object

xyz — Atom manipulation

stesep — Stereo separation

This symbol specifies the separation between individual components of a ste-
reo pair display of a 3D object in object point units. The symbol value is deter-
mined by the display utility, and this value will be recalculated by all display
commands (see below).

Commands affected

cp — Contour plot

ip — Intensity plot

pla — Redisplay 3D object

Xyz — Atom manipulation

stkord — 1D Stack display order

This symbol designates whether the stack of buffers will be displayed with the
highest numbered buffer at the top (stkord = 0) or with the lowest number
buffer at the top (stkord = 1).

Symbol Settings

0 display stack bottom next to work space
1 display stack top next to work space

Commands affected

dr — Draw work space and stack
exp — Expanded display

ful — Full display

hcp — Hard copy plot

swidth — Spectral width

This symbol specifies the spectral width in Hertz. Note that this symbol is set
by the re and rn commands using the value in the data file header.
Changed by commands

ra— Read ASCII data

re — Read a file (old format)

rn — Read file (new format)

Commands affected

em — Exponential multiply

gm — Gaussian/Lorentzian window
gmh — Gaussian multiply in Hz

ppm — Convert Between points and PPM

ref — Set shift reference

See also

sfreq — Spectrometer frequency

taucee — Correlation time

This symbol specifies the correlational time in nanoseconds (that is, the time it
takes a molecule to rotate one radian) and is used to conduct back-calculation
simulations.

Commands affected

bck — Back-calculate NOE intensities

thick — Character thickness

This symbol specifies the number of "restrokes" for pen plotters. A symbol
value of 0 implies a single stroke. This affects all text, including axis and peak
labels.

Commands affected

gre — Greek text annotation

tex — Text annotation

See also

slant — Character slant angle

thresh — Threshold for 1D peakpick

This symbol specifies the threshold data value for picking 1D extrema. Any
peaks with heights below this threshold are not picked.

Commands affected

pic — Peak pick and label

title — Spectrum title

This symbol designates a plot title, but is not currently used.

tphasO, tphasl — Total zero and first-order phase

These symbols are not currently used.

value — Data value

This symbol is not currently used.

vector — Vectors in bundle

This symbol contains the total number of vectors along the specified dimen-
sion of the matrix. The bundle mode command sets the value of vector.

Changed by commands

bun — Set bundle mode

verify — Macro verification mode

This symbol controls the diagnostic monitoring of macro execution. This is
useful for debugging macros, or for tracing the flow of macro and menu file
calls. All output generated goes to the output window..

Symbol Settings
0 silent, no diagnostics

1 display only macro and menu file names
2 display every command line as it executes

volent — Volume entity name

This symbol contains the name of the current volume entity. The volumes cal-
culated by the vol command are stored in volent.

Commands affected

fit — Fit 1D peaks

md — Model data

vol — Integrate cross peak volumes

volobj — Volume object switch

This symbol is not currently used.

wshift — Sinebell shift

This symbol is not currently used.

wskew — Sinebell skew

This symbol is not currently used.

x0pnt, yOpnt, x1pnt, ylpnt — Cursor position

These symbols interact with the locator device using the cur command. The
symbols are used to set the cursor position when pre-positioning the cursor,
and to return the cursor position when the cur command is completed. The
units for the cursor position in both cases depend upon the map argument
given to the cur command. Cur commands that return a single point place the
cursor position values in xOpnt and yOpnt. Commands that return a pair of
points fill x1pnt and ylpnt too.

The mnu wait command sets the values of xOpnt and yOpnt to the pixel values
of the cursor position when the menu item is selected.

Changed by commands

cur — Cursor control

mnu — Menu manager

Commands affected
cur — Cursor control

pic ND Peakpick (pick modes 4 and 5 only)

xangle, yangle, zangle — Euler angles

These symbols contain the angle of rotation about the x, y, and z axes applied
to the matrix displayed by the 3D display interface. The angles are given in
units of degrees.

When projct = 3, these angles control the projection of 3D plots onto the 2D dis-
play surface.

Commands affected

cp — Contour plot

ip — Intensity plot

pla — Redisplay 3D object

Xyz — Atom manipulation

xcells, ycells — Number of character cells

These symbols provide the width and height of the current FELIX window in
character cells. These are the units for menus and dialog boxes. The symbols
are set by FELIX when the window is created or resized.

xpixel, ypixel — Number of pixels

These symbols provide the FELIX window size in pixels. These are set by the
user in the init.mac file at startup to define the initial size of the FELIX window.
Thereafter, using the window manager widgets to resize the FELIX window
updates these symbols.

xpklbl — Cross peak label switch

This symbol controls the display of cross peak labels in 2D and ND plots.

Symbol Settings

0 no labels
1 peak item numbers

2 peak assignments
-1 draw only crosshair, no box around peak

Commands affected
drx — Display cross peaks

hcp — Hard copy plot

See also

drwpks — Draw peaks switch

xsize, ysize — Plot size

These symbols control the size of the next plot, or contain the size of the current
plot, depending on the value of pltusr. Sizes are in inches.

Commands affected

dr — Draw work space and stack

exp — Expanded display

ful — Full display

cp — Contour plot

ip — Intensity plot

sp — Stack plot

See also

pltusr — Position plot manually switch

xzero, yzero — Plot origin

xwalk, ywalk — Walking menu position

These symbols return a position near the cursor in character cell units when
the user clicks the mouse button on a menu selection. The position represents
the best location to place the next menu to create the appearance of walking
menus.

Changed by commands

mnu — Menu manager

xyzent — Coordinate entity

This symbol contains the name of the current atom coordinate entity.

Commands affected
bck — Back-calculate NOE intensities
xyl — Atom list manipulation

Xyz — Atom manipulation

xzero, yzero — Plot origin

These symbols control the origin of the current plot relative to the origin of the
current graphics frame or plot device.
Commands affected

dr — Draw work space and stack

exp — Expanded display

ful — Full display

hcp — Hard copy plot

cp — Contour plot

ip — Intensity plot

sp — Stack plot

np — Null plot

See also

xsize, ysize — Plot size

yOpnt

See x0pnt, yOpnt, x1pnt, ylpnt — Cursor position.
ylpnt

See x0pnt, yOpnt, x1pnt, ylpnt — Cursor position.
yangle

See xangle, yangle, zangle — Euler angles.

ycells

See xcells, ycells — Number of character cells.

ypixel

See xpixel, ypixel — Number of pixels.
ysize

See xsize, ysize — Plot size
ywalk

Seexwalk, ywalk — Walking menu position.
yzero

See xzero, yzero — Plot origin.
zangle

See xangle, yangle, zangle — Euler angles.

(C Macro Examples

This appendix gives you some examples of macros. You may use the
macros that appear here or write your own. For more detailed infor-
mation on working with macros, see Chapter 4, Macros.

4dv.mac

\%

Macro manufactures a simple 4D (16x16x16x16)

~.

matrix with synthetic cross peaks located

~.

; at (D1,D2,D3,D4) indices (8,8,8,4),

(8,8,8,8), and at (8,8,8,13).

~.

tim z ; start chronograph

~.

bun 0 ; initialize bundle mode

; initialize matrix values
ty Initializing matrix &matfil
def count 0
def limit 1000
bun 1

for dlvec 1 &vector

FELIX Command Language Reference/ March 2002

305

> 1lwb

> ze
> swb
> nex

> bun 0

> ty

; make cross peaks

> ty Creating crosspeak at (8,8,8,4)...

> for loopl 7 9

> for loop2 7 9

> for loop3 7 9

> for loop4 3 5

> mpv &loopl &loop2 &loop3

&loop4 1000000
> nex
> nex
> nex
> nex

> mpv 8 8 8 4 2500000

> ty Creating crosspeak at (8,8,8,8)...
> for loopl 7 9

> for loop2 7 9

> for loop3 7 9

> for loop4 7 9

> mpv &loopl &loop2 &loop3
&loop4 1000000

> nex
> nex

> nex

> nex

> mpv 8 8 8 8 5000000

> ty Creating crosspeak at (8,8,8,13)...

> for loopl 7 9

> for loop2 7 9

> for loop3 7 9

> for loop4 12 14

> mpv &loopl &loop2 &loop3

&loop4 1000000

> nex
> nex

> nex

> nex

> mpv 8 8 8 13 2500000

> 7

> ty -done-

> time r time

> ty Elapsed time was &time seconds.
> ret

> end

diag.mac

> ; Macro extracts the diagonal plane out of a
> ; square-cube 3D matrix and stores diagonal
> ; as a 2D matrix. Caution, macro will overwrite

> ; matrix defined as 'mx2d’.

> ; Macro employs vector shuttle which effectively

> ; exploits FELIX bricks.

> get ’3D matrix -->’ mx3d

> get ’2D extract -->’ mx2d

~

~

~

~

ing mat &mx3d exist

if &exist eq 0 then
ty Matrix &mx3d not found!
go scram

eif

ing mat &mx2d exist

if &exist eq 0 then
ty Matrix &mx2d not found!
go scram

eif

mat &mx3d r

def ndl &dlsize

def nd3 &d3size

bld &mx2d 2 &ndl &ndl 0 y
mat &mx2d r

def brk &b2size

ty brick=&brk

eva npass (&nd3/&brk)

eva nbuff (&brk+1l)

ty nbuff=&nbuff

def vec 0

cmx

dat 0

cfg &ndl &nbuff

ty buffers=&buffers
for pass 1 &npass

ty pass=&pass

mat &mx2d r
for xbuff 1 &brk
eva nvec (&vec+&xbuff)
loa 0 &nvec &nvec
stb &xbuff
ty loading vector=&nvec
next
mat &mx2d w
for xbuff 1 &brk
eva nvec (&vec+&xbuff)
lwb &xbuff
sto 0 &nvec
ty storing vector=&nvec
next
eva vec (&vec+&brk)
next
cmx
scram:

end

dss.mac

~

~

~

~

~

~

Macro generates a so-called ‘doubly-phase-shifted’
window function. Shows that as expected, anything is

possible. For cognoscente only...

Initial phase is 90-degrees, final phase is 165-degrees.

def begin 90
def end 165
def size 512

eva incre (1.0* (&begin-&end)/&size)

ze

stb 1

def animat 1

ty * ¢

for point 1 &size
esc out
if &out ne 0 scram
eva shift (&begin- (&point-1) *&incre)
set 1
ty shift=&shift $
ss &size &shift
dr
gv &point value
1db 1
pv &point &value
stb 1

next

scram:
def animat 0
ret

end

eval_point.mac

~

~

~

~

~

~

Macro evaluates a particular point in each
vector of a serial 2D data file and stores
output in a FELIX macro file. Macro presents
example of using one macro to build another

macro.

get ’'Input Data File -->’ inpdata

get ’Output Data File -->’ outdata

> get ’‘Data Point to Measure -->’ point

> get ’‘Number of Exps -->' num exp
> opn txt &outdata 0

> for loop 1 &num exp

> re &inpdata

> gv &point dataval

> put &dataval

> next

> cls

> ret

> end

Ipf_d2.mac

> ; Simple macro to adjust the 1lst point in a
> ; D2(tl)-vector of a transformed 2D matrix
> ; using LP. Removes missampling artifact in
> ; virtual acgisition. Caution, original

> ; matrix is overwritten.

> H
> get ’Specify matrix -->’ mat
> ing mat &mat exist
> if &exist eq 0 then
> ty Matrix &mat not found!!!
> go scram
> eif
> 7
> cmx
> mat &mat w
> 7
> for row 1 &dlsize

> loa &row 0

> hft

> ift

> 1pf

> ft

> mul 2

> red

> sto &row 0

> ty col=&row $
> next

> scram:

> ret

> end

madd.mac

> ; Macro sums two matrices in a Dl-vector-wise
> ; fashion. Macro exploits the FELIX matrix format
> ; to improve efficiency. Caution, macro will

> ; overwrite ’sum matrix’.

> H
> get 'Matrix 1 --> ’ matl
> get 'Matrix 2 -->’ mat2
> get ’‘Sum Matrix --> ’ mat3
> 7
> ing mat &matl exist
> if &exist eq 0 then
> ty Matrix &matl not found!
> go scram
> eif
> ing mat &mat2 exist
> if &exist eq 0 then

> ty Matrix &mat2 not found!

~

go scram

eif

mat &matl
if &dimen ne 2 not2d
def ncol &dlsize
def nrow &d2size
def brick &b2size
mat &mat2
if &dimen ne 2 not2d
if &dlsize ne &ncol badsize
if &d2size ne &nrow badsize
ty Building matrix &mat3...
bld &mat3 2 &ncol &nrow 0 y
cmx
eval ccol (&ncol/2)
eva nbuf (&brick+1l)
cfg &ccol &nbuf
mat &matl r
mat &mat2 r
mat &mat3 w
ty Adding &matl and &mat2 to store in &mat3
def count 0
loop:
if &count ge &nrow done
mat &matl
for ibuf 1 &buffers
eva row (&count+&ibuf)
loa 0 &row
stb &ibuf

ty loading= &row $

next
mat &mat2
for ibuf 1 &buffers
eva row (&count+&ibuf)
loa 0 &row
adb &ibuf
ty adding= &row $
next
mat &mat3
for ibuf 1 &buffers
1db &ibu
eva row (&count+&ibuf)
sto 0 &row
ty storing= &row $
next
eva count (&count+&buffers)
go loop
done:
cmx
end
not2d:
ty Matrix must be 2-D.
end
badsize:
ty Matrices must be same size.
scram:
ret

end

msub.mac

~

Macro subtracts two matrices in a Dl-vector-wise

~

fashion. Macro exploits the FELIX matrix format
to improve efficiency. Caution, macro will

overwrite ’‘difference matrix’.

~

~

~

get 'Matrix 1 -->’ matl
get ’'Matrix 2 -->’ mat2

get ’'Difference Matrix -->’ mat3

ing mat &matl exist

if &exist eq 0 then
ty Matrix &matl not found!
go scram

eif

ing mat &mat2 exist

if &exist eq 0 then
ty Matrix &mat2 not found!
go scram

eif

mat &matl

if &dimen ne 2 not2d

def ncol &dlsize

def nrow &d2size

def brick &b2size

mat &mat2

if &dimen ne 2 not2d

if &dlsize ne &ncol badsize
if &d2size ne &nrow badsize
ty Building matrix &mat3...
bld &mat3 2 &ncol &nrow 0 y

cmx

eval ccol (&ncol/2)
eval nbuf (&brick+1l)
cfg &ccol &nbuf
mat &matl r
mat &mat2 r
mat &mat3 w
ty Subtracting &mat2 from &matl to store in &mat3
def count 0
loop:
if &count ge &nrow done
mat &matl
for ibuf 1 &nframe
eva row (&count+&ibuf)
loa 0 &row
stb &ibuf
ty Loading= &row $
next
mat &mat2
for ibuf 1 &nframe
eva row (&count+&ibuf)
loa 0 &row
mul -1.0
adb &ibuf
ty Subtract= &row $
next
mat &mat3
for ibuf 1 &nframe
1ldb &ibuf
eva row (&count+&ibuf)
sto 0 &row

ty Storing= &row $

next
eva count (&count+&nframe)
go loop
done:
cmx
end
not2d:
ty Matrix must be 2-D.
end
badsize:
ty Matrices must be same size.
scram:
ret

end

mult.mac

7

7

~

Complex data point in work is multiplied by a

user-specified value (real number or integer).

get ’Specify point to vary -->’ point
get ’Specify point multiplier -->’ mult
gv &point rvalue

exc

gv &point ivalue

exc

eva real (&mult*&rvalue)

eva imag (&mult*&ivalue)

srv &point &point &real &imag

end

old2new.mac

> ; Macro converts old serial FELIX data file to

> ; new data file format.

> 7

> get ’‘old data file --> ’ fill
> get ’'new data file --> ’ £fil2
> def count 0

> loop:

> re &fill

> if &status ne 0 scram
> wn &£il2

> eval count (&count+1)
> ty count= &count$

> go loop

> scram:

> ty &count records converted.
> ret
> end

psi.mac

> ; Macro conducts the imaginary-part of a D1 hypercomplex
> ; transform on data acquired in separate real and

> ; imaginary data files- for antiquaries only!

> cl

> for row 1 400

> loa 0 &row

> stb 1

> re imagpart.ser
> bc 0.05

> ss 400 90

> zf 2048

> bft

> def phase0 89.95
> def phasel -21.43
> ph

> pol 4

> exc

> zr

> adb 1

> 1db 1

> exc

> sto 0 &row

> ty row=&row $

> next

> ret

> end

psr.mac

> ; Macro conducts the real-part of a D1 hypercomplex
> ; transform on data acquired in separate real and

> ; imaginary data files- for antiquaries only!

> cl

> for row 1 400

> re realpart.dat

> bc 0.05

> ss 400 90

> zf 2048

> bft

> def phase0 89.9

> def phasel -21.43

> ph

> pol 4

> zi

> sto 0 &row

> ty row=&row $
> next

> ret

> end

rev_bundle.mac

> ; Reverse vectors of a ND matrix using bundle-mode

> ; access. Note that original matrix is overwritten!!!

> H
> get ’‘Specify matrix -->’ mat
> ing mat &mat exist
> if &exist eq 0 then
> ty Matrix &mat not found!!!
> go scram
> eif
>
> get ’Specify dimension to reverse -->' revd
> 7
> cmx
> mat &mat w
> def count 0
> 7
> bun 0
> tim z
> for vec 1 &vector
> bun &revd
> ty There are &vector vectors to process...

> 1lwb

rev
swb
ty Vector=&vector $

next

~

tim r time

ty Elapsed time was &time seconds.

~

scram:

ret

end

zap.mac

~

~

~

~

~

~

Original macro written by Dr. Walter Massefski.
Macro conducts a ’‘circular-shift’ on data to place
'solvent’ peak at exact center, then applies the
convolution-based (cnv) solvent suppression and back

shifts the data.

ty Specify window type
get ’ (Sinebell=0, Gaussian=1l) -->’ wintyp
if &wintyp ne 0 or &wintyp ne 1 then
ty Invalid window-type selection.
go scram
eif
get ’'Window size -->’ zaparg
eva midpt (&datsiz/2+1)
cur 1 1 21
if &xOpnt 1t &first or &xOpnt gt &last scram
eva getpt (&midpt-&xOpnt)

csl &getpt

ift
cnv &wintyp &zaparg
ft
csr &getpt
dr
scram:
cur 0 1 11
ret

end

¢35 Index

=)

A

assigning, database information, 71

B

building See creating
buttons, 63

C

callback macro, 68
combo boxes, 64
command arguments, 8
command statement
length, 12
command-line mode, 8
commands
control panel, 54
input, 54, 60
output, 54, 59
comment symbols, 14
continuation line symbol, 13
control panel
exiting, 67
control panel commands
types, 54
using, 54
control panels, 54
accessing, 55
converting
database entities, 77
creating
database entities, 76
database files, 75
database information, 74
database item lists, 85

D
dat files, 13

database
assignments, 71
command mode, 74
elements, 71
entity, 71
files, creating, 75
item, 71
item buffer, 79
item lists, 82
loading and storing elements, 80
schema, 71, 72
structure, 71
tables, 72

E

elements

loading and storing, 80
element, database, 71
entities

converting, 77

creating, 76

integrity testing, 78
entity

database, 71
executing, FCL commands, 3
exiting

control panels, 67

F

FCL commands

executing, 3
file-open combo, 64

icon mode, 53

input commands, 54, 60
integrity-testing, database entities, 78
item buffer, database, 79

FELIX Command Language Reference/ March 2002

323

item lists
creating, 85
item lists, database, 82
item mode, 51
item, database, 71

K
keypad mode, 52

L

list boxes, 60

loading, database elements, 80

M

macro execution mode, 9
macros
callback, 68
mat files, 13
menu interface
modifying, Xiv
menubar mode, 50
mode
database command, 74
icon, 53
item, 51
keypad, 52
menubar, 50
mouser, 52
option, 53
popup, 50
separator, 51, 53
toggle, 51
modes, 50
modifying
iconbar interface, 52
menu interface, xiv
mouser mode, 52

O

option mode, 53
output commands, 54, 59

)

popup mode, 50
pulldowns, 64

R

radio buttons, 62
reserved symbols, 4, 8

S

schema, database, 72
schema,database, 71
separator mode, 51
ser files, 14
slider combo, 65
sparator mode, 53
spreadsheet interface, 88
storing
database elements, 80
switches, 62
symbols
comment, 14
continuation line, 13
reserved, 4, 8
status, 10
user, 4

T

tables, database, 72
toggle mode, 51
toggles, 62

U

user symbols, 4

324 FELIX Command Language Reference/ March 2002

	Contents
	How To Use This Book
	Who should use this guide
	What FCL does
	Things to be familiar with
	Workstation requirements

	Related books
	Typographical conventions

	1 Introduction
	What is FCL?
	Using this guide
	FCL command line
	Symbols and expressions
	Reserved symbols
	User symbols

	Macros
	Menus
	The database

	2 FCL Basics
	Accessing FCL
	Commands and command arguments
	Case sensitivity
	Errors in FCL commands
	Display and context effects
	Line continuation

	File prefixes and suffixes
	Macro file formats
	Comment symbols
	Tabs and spacing

	3 Symbols and Expressions
	Reserved symbols
	Types of reserved symbols

	User-defined symbols
	Defining symbols and their values

	Symbol substitution
	Local symbols

	Global symbols
	Arithmetic expressions
	Integer vs. real expressions
	Complex mathematical functions
	Database functions

	4 Macros
	Macro directories
	Writing macros
	Executing macros
	Passing arguments to macros

	Loops
	Interrupting a macro
	Loop application: Reversing a matrix
	Loop application: Accessing the database
	Branching statements
	go statements
	gto statements
	gif statements
	if statements
	if/then/else statements
	ifx statements
	exr statements

	Macro-specific commands
	com statements
	err statements
	ty and tym statements

	Using FELIX to build macros
	Some simple macro applications
	Reading files
	Plotting multiple files

	5 Menus and Control Panels
	The menu commands
	Changing the menubar interface
	Modes
	Changing the iconbar interface

	Control panels (dialog boxes)
	Types of control panel commands
	Working with control panel commands
	Output commands
	Input commands
	Control-panel dependencies

	Finding your way through menu interface files

	6 The Database and Tables
	Structure of the database
	The database schema
	Creating database information

	Database command structure
	Basic dba subcommands
	Building database files
	Database entities
	Database items and elements

	Database item lists
	dba list subcommands
	Creating lists of information

	Spreadsheet interface

	A Command Reference
	abl — Automatic baseline flattening
	abp — Automatic baseline point selection using FLATT algorithm
	abq — Automatic selection of baseline points
	abs — Absolute value replacement of work
	adb — Add work to buffer
	add — Add number to work
	aln — Antilogarithm (exponential) of work
	alt — Alternating real/imaginary
	ann — Annotate plot
	aph — Autophase spectrum
	arr — Arrow annotation
	bas — Baseline points manipulation
	bc — Baseline correct
	bck — Back-calculate NOE intensities
	bft — Bruker-Fourier transform
	bir — Read database from Insight II
	bit — Bit manipulation operators
	biw — Write database to Insight II
	bld — Build a matrix file
	bml — Get molecule name
	bun — Set bundle mode
	by, bye — Exit FELIX
	cal — Macro call
	cd — Convolution difference window
	cdf — Conditional define
	cfg — Configure memory
	cgd — Change values in the control panel
	chi — Calculate minimum chi-square value
	cl — Close a data file
	clr — Clear frame
	cls — Close output file
	cmb — Change symbol on the user interface
	cmd — List commands
	cmx — Close matrix file(s)
	cnj — Complex conjugate
	cnv — Time-domain convolution
	com — Execute FELIX commands in macros
	cp — Contour plot
	cpl — Real to complex
	csh — Circular signed shift
	csl — Circular shift left
	csp — Cubic spline baseline correction
	csr — Circular shift right
	cur — Cursor control
	dba — Database facility
	dbc — Oversampled baseline correction
	dbl — Double data size
	def — Define a symbol
	der — Derivative
	dft — Fast Fourier transform of digitally oversampled data
	dir — Current working directory
	dr — Draw work space and stack
	drb — Display brother cross peaks
	drx — Display cross peaks
	dst, exd, don, dof — Distributed processing commands
	eif — Macro end of block if
	els — Macro else block
	em — Exponential multiply
	ena — Enable multiple cursors
	end — Macro end statement
	env — Get a system environment variable
	err — Macro branch on error condition
	esc — Test for escape key event
	eva — Evaluate expression and assign to symbol
	ex — Execute a macro
	exc — Exchange real and imaginary
	exm — Execute Multiple Macros
	exp — Expanded display
	exr — Execute a macro and return
	fit — Fit 1D peaks
	flf — FaceLift baseline correction
	fli — Frequency list manipulation
	flp — Low-point fold of work space
	flt — FLATT baseline flattening
	fol — Fold work space in half
	for — Loop for macros
	fpo — Pop FELIX window
	fpu — Push FELIX window
	fra — Manipulate graphics frames
	ft — Fast Fourier transform
	ful — Full display
	fxp — Filter cross peaks
	get — Get a symbol value
	gf — Generate FID
	gif — Macro arithmetic goto
	gm — Gaussian/Lorentzian window
	gmh — Gaussian multiply in Hz
	go — Macro unconditional branch
	gre — Greek text annotation
	gto — Macro case goto
	gsp — Generate spectrum
	gv — Get value
	hav — Halve data size
	hcp — Hard copy plot
	hft — Hilbert transform
	idf — Is defined
	if — Macro if conditional branch
	Advanced if conditionals
	Macro if conditional block execution

	ift — Inverse Fourier transform
	inq — Inquire If file exists
	ins — Insight II-FELIX inter-process communication
	int — Integral
	inv — Inverse of workspace
	ip — Intensity plot
	jcp — Calculate J-coupling constant
	kw — Kaiser window
	ld — List data
	ldb — Load buffer into work space
	lim — Matrix limits
	lin — Line annotation
	lis — List symbol table
	lm — List macro
	loa — Load vector from matrix
	log — Natural logarithm of work space
	lmd — Load theoretical vector
	lpf — Linear predict first points
	lpl — Linear predict last points
	lps — Solvent suppression using linear prediction
	lpx — General linear prediction
	lrl — Find local extremum
	lvo — Load volume time course
	lwb — Load work space from bundle
	mat — Open matrix
	md — Model data
	mf — Matched filter
	mgv — Matrix get data value
	mpv-Matrix put data value
	mmp — Display memory map
	mnu — Menu manager
	ms — Magnitude spectrum
	mul — Multiply the work space by a number
	mwb — Multiply work by buffer
	nd2 — Neighbor detection in 2D NOESY spectrum
	nd3 — Neighbor detection in 3D NOESY spectrum
	nex — End of a loop
	no — Generate random noise
	nop — No operation
	nor — Normalize data
	np — Null plot
	old — Recall old limits
	opn — Open output file
	opt — FELIX option license inquiry or license checkin and checkout
	ord — Matrix dimension order
	ovc — Overlay contour plot
	pd2 — Prototype pattern detection in 2D
	pd3 — Prototype pattern detection in 3D
	pen — Define a new colored pen
	ph — Phase correction
	pic — Peak pick and label
	For 1D spectra
	For ND Spectra

	piv — Set the pivot for phase correction
	pla — Redisplay 3D object
	pol — Polynomial baseline correction
	pop — Pop the display stack
	ppm — Convert Between points and PPM
	prb — Residue type probability scoring
	prf — Formatted print
	ps — Power spectrum
	psa — Suggest assignment for a set of patterns
	psh — Push the work space onto the buffer stack
	pso — Polynomial-based solvent suppression
	puf — Formatted put
	pur — Purge symbol table
	put — Put record
	pv — Put value
	pxp — Automated peak assignment
	qsb — Skewed sinebell window
	qss — Skewed sinebell squared window
	ra — Read ASCII data
	rb — Read Bruker file
	re — Read a file (old format)
	rea — Read record from ASCII file
	rec — Rectangle annotation
	red — Reduce complex to real
	ref — Set shift reference
	ret — Macro subroutine return
	rev — Reverse
	rf — Read FELIX for Windows file
	rft — Real Fourier transform
	rj — Read JEOL file
	rm — Read macro
	rmx — Reference matrix
	rn — Read file (new format)
	rph — Real-time phase
	rpl — Real-time polynomial baseline correction
	rv — Read Varian file
	sar — Autoscreen command
	sb — Sinebell window
	sca — Scale factor for dimension
	seg — Integral segments
	sep — Separate real and imaginary
	set — Set work space to a value
	shl — Shift left
	shr — Shift right
	smo — Binomial smooth
	sp — Stack plot
	sqz — Squeeze a matrix
	srv — Set range to value
	ss — Sinebell squared window
	ssh — Signed shift
	ssp — Synthesize spectrum from peak list
	ste — Stella peak picker
	stb — Store work space to buffer
	sto — Store vector to matrix
	str — String manipulation operators
	sub — Sub-string extraction
	swb — Store work space to bundle
	sys — Execute system commands
	tex — Text annotation
	til — Tile plot
	tim — A basic clock and chronograph
	tm — Trapezoidal multiplication
	ty — Type text
	tyf — Type a file of text to the user
	tym — Type text to motif
	unf — Unfold work
	ver — FELIX version number and release date
	vol — Integrate cross peak volumes
	wa — Write an ASCII data file
	wai — Wait a while
	wm — Write macro
	wn — Write a file (new format)
	wr — Write a file (old format)
	xpa — Cross-peak assignments from shifts and spins
	xpk — Cross-peak operations
	xpl — Make a list of peaks
	xps — Generate spins and shifts from cross peaks
	xsh — Exchange stack head with work space
	xss — Simulated annealing assignment functions
	xyl — Atom list manipulation
	xyp — X,Y data pair manipulation
	xyz — Atom manipulation
	ze — Zero workspace
	zf — Zero fill
	zgt — Zero greater than
	zi — Zero imaginary
	zlt — Zero less than
	zr — Zero real
	zp — Null plot

	B Symbol Reference
	absint — Absolute intensity
	absmg1, absmg2, absmg3, absmg4 — Absolute magnitude peak search window size
	animat — Animation switch
	annang — Annotation angle
	annasz — Annotation arrow size
	anncol — Annotation color
	annfil — Annotation file
	annlst — Annotation line style
	annpfx — Annotation prefix
	annsiz — Annotation text size
	annunt — Annotation units
	autox, autoy, autoz — Autorotation X-, Y-, and Z-angle increments
	autpse — Autorotation pause
	autrot — Autorotation switch
	cntrot — Autorotation count
	axsobj — Axis object switch
	axtype — 1D Axis type
	b1size, b2size, b3size, b4size — Matrix brick size
	basent — Baseline points entity
	bcfrac — Baseline correct fraction
	bckrad — Back-calculation cutoff radius
	bigpt — Big point in workspace
	blkwht — Black/White reverse switch
	button — Button status
	celpxx — Cell X pixels
	celpxy — Cell Y pixels
	center — Center plot switch
	chi — Minimum chi-square value
	clmode — Contour level mode
	cntrot — Autorotation count
	colcur — Color of cursor
	conmod — Contour spacing modifier
	contyp — Contour interpolation type
	cutoff — Cutoff for stack plot
	cycle — Color cycle length
	d1size, d2size, d3size, d4size — Matrix size
	d1vect, d2vect, d3vect, d4vect — Current vector
	datfil — 1D Data file
	datpfx — 1D Data file prefix
	datsiz — Data size
	datype — Data type
	dbafil — Database file
	dbapfx — Database file prefix
	deltax, deltay — Delta x and y for stack plot
	dimen — Number of Matrix Dimensions
	dimplt — Number of plot dimensions
	disply — Current display type
	draw3d — 3D capability switch
	drwbox — Draw box switch
	drwclv — Draw contour levels switch
	drwpks — Draw peaks switch
	drwxpk — Draw cross peaks switch
	dspmod — Display mode
	erase — Erase display switch
	etcpfx — Runtime files prefix
	first — First point
	flxver — FELIX version number
	fontsw — Font switch
	fontsz — Font size
	frsize — Frame size
	gbroad — Gaussian coefficient
	gibbs — Gibbs filter switch
	graysc — Gray scale switch
	grid — Grid switch
	gridco — Grid color
	gridst — Grid style
	hafwid — Halfwidth factor
	harddv — Hardcopy destination
	hardmo — Hardcopy mode
	hardx0, hardy0, hardxs, hardys — Hardcopy origin and size
	hfwid1, hfwid2, hfwid3, hfwid4 — Minimum peak half width
	hilim — Current plot region high limits
	hndshk — HPGL plotter handshake
	inbias, inslop — Integral bias and slope corrections
	intolp — Integral overlap
	item — Menu item
	iwidth — Interval width for baseline correction
	keyhit — Keyboard character struck
	last — Last point
	lbroad — Line broadening
	level — Contour level
	linpts — Lines/Points for draw command
	loc3x0, loc3x1, loc3y0,loc3y1, loc3z0, loc3z1 — 3D Locator endpoint coordinates
	lolim1, hilim1, lolim2, hilim2, lolim3, hilim3, lolim4,hilim4 — Current plot region low and high ...
	macfil — Macro file
	macpfx — Macro file prefix
	matfil — Matrix file
	matpfx — Matrix file prefix
	maxvol — Maximum volume slots in entity
	mdlcf1, mdlcf2 — Model data coefficients 1 and 2 (matrix factor)
	mdlpke — Model data peak entity ID
	mdlvle — Model data volume entity ID
	mdlvsl — Model data volume slot number
	menu — Menu name selected
	mframe — Matrix framesize
	minzee — Cutoff Z-magnetization for back-calculation
	mnufil — Menu file
	mnumod — Default frame position
	mnupfx — Menu file prefix
	mscale — Matrix scale factor
	msgfil — Message file
	msgpfx — Message file prefix
	msgc1, msgc2, msgi1, msgi2, msgr1, msgr2 — Character, integer, and real message parameters
	ndctyp — Normalized device coordinate type
	newhpglc — control contouring in HPGL plots
	newpostc — control contouring in PostScript plots
	nframe — Number of stack frames
	nlevel — Number of contour levels
	norval — Normalization value
	objmem — Object memory size limit
	order1, order2, order3, order4 — Matrix dimension order
	orient — Postscript orientation
	ovrlap — Stack overlap
	paphgt — Paper height
	papwid — Paper width
	pennum — Starting color
	phase0 — Zero-order phase
	phase1 — First-order phase
	picent — 1D peaks entity
	pksent — Cross peak entity
	pksobj — Peaks object switch
	pkstyl — 1D peak display style
	pkunit — Units for picking peaks
	plotd1, plotd2, plotd3, plotd4 — Plot dimension
	pltann — Annotation switch
	pltmod — Plot mode
	pltobj — Plot object switch
	pltorg — Plot origin
	pltusr — Position plot manually switch
	posneg — Negative level switch
	proj1 — Type of 1D projection onto x axis
	proj2 — Type of 1D projection onto y axis
	projct — Graphics projection type
	projsz — Size of 1D projections
	pwidth — Pen width
	redraw — Automatic backing store of plots
	refpt — Reference point
	refsh — Reference shift
	rowinc — Row increment
	scale — Plot scale factor
	schfil — Schema file
	schpfx — Schema file prefix
	segent — Integral segments entity
	segint — Segmented integral switch
	sfreq — Spectrometer frequency
	slant — Character slant angle
	smalpt — Small point in workspace
	stack — Stack depth
	status — Command status
	steang — Stereo angle
	stereo — Stereo switch
	stesep — Stereo separation
	stkord — 1D Stack display order
	swidth — Spectral width
	taucee — Correlation time
	thick — Character thickness
	thresh — Threshold for 1D peakpick
	title — Spectrum title
	tphas0, tphas1 — Total zero and first-order phase
	value — Data value
	vector — Vectors in bundle
	verify — Macro verification mode
	volent — Volume entity name
	volobj — Volume object switch
	wshift — Sinebell shift
	wskew — Sinebell skew
	x0pnt, y0pnt, x1pnt, y1pnt — Cursor position
	xangle, yangle, zangle — Euler angles
	xcells, ycells — Number of character cells
	xpixel, ypixel — Number of pixels
	xpklbl — Cross peak label switch
	xsize, ysize — Plot size
	xwalk, ywalk — Walking menu position
	xyzent — Coordinate entity
	xzero, yzero — Plot origin
	y0pnt
	y1pnt
	yangle
	ycells
	ypixel
	ysize
	ywalk
	yzero
	zangle

	C Macro Examples
	4dv.mac
	diag.mac
	dss.mac
	eval_point.mac
	lpf_d2.mac
	madd.mac
	msub.mac
	mult.mac
	old2new.mac
	psi.mac
	psr.mac
	rev_bundle.mac
	zap.mac

	Index

